- 相關(guān)推薦
高中數(shù)學(xué)解題思路匯總
高中數(shù)學(xué)是一門很關(guān)鍵學(xué)科,是高考拉分的學(xué)科,所以一定要學(xué)好數(shù)學(xué),掌握數(shù)學(xué)解題思路。接下來陽光網(wǎng)小編將為大家介紹一下高中數(shù)學(xué)解題思路有哪些,希望對同學(xué)們的高中數(shù)學(xué)學(xué)習(xí)有幫助。
1、數(shù)形結(jié)合
對于高中數(shù)學(xué)題的解題思路有許多種,但數(shù)與形結(jié)合是最常用的,因此我們在解答數(shù)學(xué)題時(shí),能畫圖的盡量畫出圖形,以利于正確地理解題意、快速地解決問題,因?yàn)橥ㄟ^結(jié)合圖形能快速的找出一些數(shù)學(xué)題的解題思路。
2、分類討論
我們常常會(huì)遇到這樣的情況,解到某一步之后,不能再以統(tǒng)一的方法、統(tǒng)一的式子繼續(xù)進(jìn)行下去,這就需要對各種情況加以分類,并逐類求解,然后綜合歸納得解,這就是分類討論。由于高中數(shù)學(xué)的變通性強(qiáng),就會(huì)引起分類討論。在分類討論解題時(shí),要做到標(biāo)準(zhǔn)統(tǒng)一,不重不漏。
3、假設(shè)法
(1)對于所求的未知量,先設(shè)法構(gòu)思一個(gè)與它有關(guān)的變量;
(2)確認(rèn)這變量通過無限過程的結(jié)果就是所求的未知量;(3)構(gòu)造函數(shù)(數(shù)列)并利用極限計(jì)算法則得出結(jié)果或利用圖形的極限位置直接計(jì)算結(jié)果。
4、函數(shù)與方程
函數(shù)思想是指運(yùn)用運(yùn)動(dòng)變化的觀點(diǎn),分析和研究數(shù)學(xué)中的數(shù)量關(guān)系,通過建立函數(shù)關(guān)系,運(yùn)用函數(shù)的圖像和性質(zhì)去分析問題、轉(zhuǎn)化問題和解決問題;
方程思想,是從問題的數(shù)量關(guān)系入手,運(yùn)用數(shù)學(xué)語言將問題轉(zhuǎn)化為方程(方程組)或不等式模型(方程、不等式等)去解決問題。利用轉(zhuǎn)化思想我們還可進(jìn)行函數(shù)與方程間的相互轉(zhuǎn)化。
高考數(shù)學(xué)的正確解題思想
1、函數(shù)與方程思想
函數(shù)思想是指運(yùn)用運(yùn)動(dòng)變化的觀點(diǎn),分析和研究數(shù)學(xué)中的數(shù)量關(guān)系,通過建立函數(shù)關(guān)系(或構(gòu)造函數(shù))運(yùn)用函數(shù)的圖像和性質(zhì)去分析問題、轉(zhuǎn)化問題和解決問題;方程思想,是從問題的數(shù)量關(guān)系入手,運(yùn)用數(shù)學(xué)語言將問題轉(zhuǎn)化為方程(方程組)或不等式模型(方程、不等式等)去解決問題。利用轉(zhuǎn)化思想我們還可進(jìn)行函數(shù)與方程間的相互轉(zhuǎn)化。
2、數(shù)形結(jié)合思想
中學(xué)數(shù)學(xué)研究的對象可分為兩大部分,一部分是數(shù),一部分是形,但數(shù)與形是有聯(lián)系的,這個(gè)聯(lián)系稱之為數(shù)形結(jié)合或形數(shù)結(jié)合。它既是尋找問題解決切入點(diǎn)的“法寶”,又是優(yōu)化解題途徑的“良方”,因此我們在解答數(shù)學(xué)題時(shí),能畫圖的盡量畫出圖形,以利于正確地理解題意、快速地解決問題。
3、特殊與一般的思想
用這種思想解選擇題有時(shí)特別有效,這是因?yàn)橐粋(gè)命題在普遍意義上成立時(shí),在其特殊情況下也必然成立,根據(jù)這一點(diǎn),我們可以直接確定選擇題中的正確選項(xiàng)。不僅如此,用這種思想方法去探求主觀題的求解策略,也同樣精彩。
4、極限思想解題步驟
極限思想解決問題的一般步驟為:(1)對于所求的'未知量,先設(shè)法構(gòu)思一個(gè)與它有關(guān)的變量;(2)確認(rèn)這變量通過無限過程的結(jié)果就是所求的未知量;(3)構(gòu)造函數(shù)(數(shù)列)并利用極限計(jì)算法則得出結(jié)果或利用圖形的極限位置直接計(jì)算結(jié)果。
5、分類討論思想
我們常常會(huì)遇到這樣一種情況,解到某一步之后,不能再以統(tǒng)一的方法、統(tǒng)一的式子繼續(xù)進(jìn)行下去,這是因?yàn)楸谎芯康膶ο蟀硕喾N情況,這就需要對各種情況加以分類,并逐類求解,然后綜合歸納得解,這就是分類討論。引起分類討論的原因很多,數(shù)學(xué)概念本身具有多種情形,數(shù)學(xué)運(yùn)算法則、某些定理、公式的限制,圖形位置的不確定性,變化等均可能引起分類討論。在分類討論解題時(shí),要做到標(biāo)準(zhǔn)統(tǒng)一,不重不漏。
高中數(shù)學(xué)快速解題的方法
1.熟悉基本的解題步驟和解題方法
解題的過程,是一個(gè)思維的過程。對一些基本的、常見的問題,前人已經(jīng)總結(jié)出了一些基本的解題思路和常用的解題程序,我們一般只要順著這些解題的思路,遵循這些解題的步驟,往往很容易找到習(xí)題的答案。
2.審題要認(rèn)真仔細(xì)
對于一道具體的習(xí)題,解題時(shí)最重要的環(huán)節(jié)是審題。審題的第一步是讀題,這是獲取信息量和思考的過程。讀題要慢,一邊讀,一邊想,應(yīng)特別注意每一句話的內(nèi)在涵義,并從中找出隱含條件。
有些學(xué)生沒有養(yǎng)成讀題、思考的習(xí)慣,心里著急,匆匆一看,就開始解題,結(jié)果常常是漏掉了一些信息,花了很長時(shí)間解不出來,還找不到原因,想快卻慢了。所以,在實(shí)際解題時(shí),應(yīng)特別注意,審題要認(rèn)真、仔細(xì)。
3.一般思維規(guī)律的方法
如觀察、試驗(yàn)、比較、分類、猜想、類比、聯(lián)想、歸納、演繹、分析、綜合等。在具體的解題中,有通性通法、適應(yīng)面廣的'特征,常用于思路的發(fā)現(xiàn)與探求。
4.論證演算的方法
這又可以依其適應(yīng)面分為兩個(gè)層次:第一層次是適應(yīng)面較寬的求解方法,如消元法、換元法、降次法、待定系數(shù)法、反證法、同一法、數(shù)學(xué)歸納法(即遞推法)、坐標(biāo)法、三角法、數(shù)形結(jié)合法、構(gòu)造法、配方法等等;第二層次是適應(yīng)面較窄的求解技巧,如因式分解法以及因式分解里的“裂項(xiàng)法”、函數(shù)作圖的“描點(diǎn)法”、以及三角函數(shù)作圖的“五點(diǎn)法”、幾何證明里的“截長補(bǔ)短法”、“補(bǔ)形法”、數(shù)列求和里的“裂項(xiàng)相消法”等。
【高中數(shù)學(xué)解題思路】相關(guān)文章:
高考化學(xué)的解題思路05-05
高考物理解題思路05-05
高考數(shù)學(xué)解題思路突破05-05
高考英語細(xì)節(jié)理解題的解題思路及技巧05-11
高考物理解題方法及思路05-10
高考物理解題思路與方法05-04
高考數(shù)學(xué)解題五大解題思路及技巧05-10
語文說明文解題思路分析05-10