- 相關(guān)推薦
最新高考數(shù)學(xué)復(fù)習(xí)要點(diǎn)講解軌跡方程的求解
符合一定條件的動(dòng)點(diǎn)所形成的圖形,或者說(shuō),符合一定條件的點(diǎn)的全體所組成的集合,叫做滿足該條件的點(diǎn)的軌跡.
軌跡,包含兩個(gè)方面的問(wèn)題:凡在軌跡上的點(diǎn)都符合給定的條件,這叫做軌跡的純粹性(也叫做必要性);凡不在軌跡上的點(diǎn)都不符合給定的條件,也就是符合給定條件的點(diǎn)必在軌跡上,這叫做軌跡的完備性(也叫做充分性).
【軌跡方程】就是與幾何軌跡對(duì)應(yīng)的代數(shù)描述。
一、求動(dòng)點(diǎn)的軌跡方程的基本步驟
、苯⑦m當(dāng)?shù)淖鴺?biāo)系,設(shè)出動(dòng)點(diǎn)M的坐標(biāo);
、矊(xiě)出點(diǎn)M的集合;
、沉谐龇匠=0;
、椿(jiǎn)方程為最簡(jiǎn)形式;
、禉z驗(yàn)。
二、求動(dòng)點(diǎn)的軌跡方程的常用方法:求軌跡方程的方法有多種,常用的有直譯法、定義法、相關(guān)點(diǎn)法、參數(shù)法和交軌法等。
、敝弊g法:直接將條件翻譯成等式,整理化簡(jiǎn)后即得動(dòng)點(diǎn)的軌跡方程,這種求軌跡方程的方法通常叫做直譯法。
⒉定義法:如果能夠確定動(dòng)點(diǎn)的軌跡滿足某種已知曲線的定義,則可利用曲線的定義寫(xiě)出方程,這種求軌跡方程的方法叫做定義法。
、诚嚓P(guān)點(diǎn)法:用動(dòng)點(diǎn)Q的坐標(biāo)x,y表示相關(guān)點(diǎn)P的坐標(biāo)x0、y0,然后代入點(diǎn)P的坐標(biāo)(x0,y0)所滿足的曲線方程,整理化簡(jiǎn)便得到動(dòng)點(diǎn)Q軌跡方程,這種求軌跡方程的方法叫做相關(guān)點(diǎn)法。
、磪(shù)法:當(dāng)動(dòng)點(diǎn)坐標(biāo)x、y之間的直接關(guān)系難以找到時(shí),往往先尋找x、y與某一變數(shù)t的關(guān)系,得再消去參變數(shù)t,得到方程,即為動(dòng)點(diǎn)的軌跡方程,這種求軌跡方程的方法叫做參數(shù)法。
、到卉壏ǎ簩蓜(dòng)曲線方程中的參數(shù)消去,得到不含參數(shù)的方程,即為兩動(dòng)曲線交點(diǎn)的軌跡方程,這種求軌跡方程的方法叫做交軌法。
*直譯法:求動(dòng)點(diǎn)軌跡方程的一般步驟
、俳ㄏ到⑦m當(dāng)?shù)淖鴺?biāo)系;
②設(shè)點(diǎn)設(shè)軌跡上的任一點(diǎn)P(x,y);
、哿惺搅谐鰟(dòng)點(diǎn)p所滿足的關(guān)系式;
、艽鷵Q依條件的特點(diǎn),選用距離公式、斜率公式等將其轉(zhuǎn)化為關(guān)于X,Y的方程式,并化簡(jiǎn);
⑤證明證明所求方程即為符合條件的動(dòng)點(diǎn)軌跡方程。
【最新高考數(shù)學(xué)復(fù)習(xí)要點(diǎn)講解軌跡方程的求解】相關(guān)文章:
高考數(shù)學(xué)復(fù)習(xí)軌跡方程的求解方法講解05-05
高考數(shù)學(xué)一輪復(fù)習(xí)軌跡方程的求解05-05
高考數(shù)學(xué)軌跡方程的求解知識(shí)點(diǎn)05-12
數(shù)學(xué)高考復(fù)習(xí)講解05-05
高考數(shù)學(xué)的復(fù)習(xí)要點(diǎn)05-10
高考數(shù)學(xué)復(fù)習(xí)策略講解05-07
高考數(shù)學(xué)復(fù)習(xí)注意要點(diǎn)05-10