- 相關(guān)推薦
關(guān)于高考數(shù)學(xué)知識點總結(jié)加例題
一、函數(shù)
1.函數(shù)的基本概念
函數(shù)的概念,函數(shù)的單調(diào)性,函數(shù)的奇偶性,這些屬于函數(shù)的基本概念,已經(jīng)在高一數(shù)學(xué)必修一中有了詳細的介紹,在此不再贅述。
2.指數(shù)函數(shù)
單調(diào)性是指數(shù)函數(shù)的重要性質(zhì),特別是函數(shù)圖象的無限伸展性,x軸是函數(shù)圖象的漸近線,當(dāng)0+∞,y->0;當(dāng)a>1時,x->-∞,y->0;當(dāng)a>1時,a的值越大,第一象限內(nèi)圖象越靠近y軸,遞增的速度越快;
3.對數(shù)函數(shù)
對數(shù)函數(shù)的性質(zhì)是每年高考的必考內(nèi)容之一,其中單調(diào)性和對數(shù)函數(shù)的定義域是熱點問題,其單調(diào)性取決于底數(shù)與“1”的大小關(guān)系.
二、三角函數(shù)
1.命題趨勢
2014年高考可能仍會將三角函數(shù)概念、同角三角函數(shù)的關(guān)系式和誘導(dǎo)公式作為基礎(chǔ)內(nèi)容,融于三角求值、化簡及解三角形的考查中.由該部分知識的基礎(chǔ)性決定這一部分知識可以和其他知識融合考查,高考中需要關(guān)注.
2.三角函數(shù)式的化簡要遵循“三看”原則
。1)一看“角”,這是最重要的一環(huán),通過看角之間的差別與聯(lián)系,把角進行合理的拆分,從而正確使用公式.
。2)二看”函數(shù)名稱”,看函數(shù)名稱之間的差異,從而確定使用的公式,常見的有”切化弦”
。3)三看”結(jié)構(gòu)特征”,分析結(jié)構(gòu)特征,可以幫助我們找到變形的方向,常見的有“遇到分式要通分”等.多做三角函數(shù)練習(xí)題會對更加熟悉的掌握三角函數(shù)有幫助,這里給大家推薦李老師教的三角函數(shù)解題法。
三、導(dǎo)數(shù)
1.導(dǎo)數(shù)的概念
1)如果當(dāng)Δx-->0時,Δy/Δx-->常數(shù)A,就說函數(shù)y=f(x)在點x0處可導(dǎo),并把A叫做f(x)在點x0處的導(dǎo)數(shù)(瞬時變化率).記作f’(x0)的幾何意義是曲線y=f(x)在點(x0,f(x0))處的切線的斜率.瞬時速度就是位移函數(shù)s對時間t的導(dǎo)數(shù).
2)如果函數(shù)f(x)在開區(qū)間(a,b)內(nèi)每一點都可導(dǎo),其導(dǎo)數(shù)值在(a,b)內(nèi)構(gòu)成一個新的函數(shù),叫做f(x)在開區(qū)間(a,b)內(nèi)導(dǎo)數(shù),記作f’(x).
3)如果函數(shù)f(x)在點x0處可導(dǎo),那么函數(shù)y=f(x)在點x0處連續(xù).
2.函數(shù)的導(dǎo)數(shù)與導(dǎo)數(shù)值的區(qū)別與聯(lián)系:導(dǎo)數(shù)是原來函數(shù)的導(dǎo)函數(shù),而導(dǎo)數(shù)值是導(dǎo)函數(shù)在某一點的函數(shù)值,導(dǎo)數(shù)值是常數(shù).
3.求導(dǎo)
在高中數(shù)學(xué)導(dǎo)數(shù)求導(dǎo)過程中,要仔細分析函數(shù)解析式的結(jié)構(gòu)特征,緊扣求導(dǎo)法則,聯(lián)系基本函數(shù)求導(dǎo)公式,對于不具備求導(dǎo)法則結(jié)構(gòu)形式的要適當(dāng)恒等變形,對于比較復(fù)雜的函數(shù),如果直接套用求導(dǎo)法則,會使求導(dǎo)過程繁瑣冗長,且易出錯,此時,可將解析式進行合理變形,轉(zhuǎn)化為教易求導(dǎo)的結(jié)構(gòu)形
【高考數(shù)學(xué)知識點總結(jié)加例題】相關(guān)文章:
高考數(shù)學(xué)估算法例題05-11
高考數(shù)學(xué)提高典型例題效益的策略05-11
高考數(shù)學(xué)函數(shù)與方程考點及典型例題匯編05-07
關(guān)于2018高考化學(xué)實驗知識點歸納及典型例題05-12