- 相關(guān)推薦
高考數(shù)學復習基本初等函數(shù)知識點歸納
一、指數(shù)函數(shù)
(一)指數(shù)與指數(shù)冪的運算
1.根式的概念:一般地,如果,那么叫做的次方根(nthroot),其中1,且*.
當是奇數(shù)時,正數(shù)的次方根是一個正數(shù),負數(shù)的次方根是一個負數(shù).此時,的次方根用符號表示.式子叫做根式(radical),這里叫做根指數(shù)(radicalexponent),叫做被開方數(shù)(radicand).
當是偶數(shù)時,正數(shù)的次方根有兩個,這兩個數(shù)互為相反數(shù).此時,正數(shù)的正的次方根用符號表示,負的次方根用符號-表示.正的次方根與負的次方根可以合并成(0).由此可得:負數(shù)沒有偶次方根;0的任何次方根都是0,記作。
注意:當是奇數(shù)時,,當是偶數(shù)時,
2.分數(shù)指數(shù)冪
正數(shù)的分數(shù)指數(shù)冪的意義,規(guī)定:
0的正分數(shù)指數(shù)冪等于0,0的負分數(shù)指數(shù)冪沒有意義
指出:規(guī)定了分數(shù)指數(shù)冪的意義后,指數(shù)的概念就從整數(shù)指數(shù)推廣到了有理數(shù)指數(shù),那么整數(shù)指數(shù)冪的運算性質(zhì)也同樣可以推廣到有理數(shù)指數(shù)冪.
3.實數(shù)指數(shù)冪的運算性質(zhì)
(二)指數(shù)函數(shù)及其性質(zhì)
1、指數(shù)函數(shù)的概念:一般地,函數(shù)叫做指數(shù)函數(shù)(exponential),其中x是自變量,函數(shù)的定義域為R.
注意:指數(shù)函數(shù)的底數(shù)的取值范圍,底數(shù)不能是負數(shù)、零和1.
2、指數(shù)函數(shù)的圖象和性質(zhì)
a1
圖象特征
函數(shù)性質(zhì)
向x、y軸正負方向無限延伸
函數(shù)的定義域為R
圖象關(guān)于原點和y軸不對稱
非奇非偶函數(shù)
函數(shù)圖象都在x軸上方
函數(shù)的值域為R+
函數(shù)圖象都過定點(0,1)
自左向右看,
圖象逐漸上升
自左向右看,
圖象逐漸下降
增函數(shù)
減函數(shù)
在第一象限內(nèi)的圖象縱坐標都大于1
在第一象限內(nèi)的圖象縱坐標都小于1
在第二象限內(nèi)的圖象縱坐標都小于1
在第二象限內(nèi)的圖象縱坐標都大于1
圖象上升趨勢是越來越陡
圖象上升趨勢是越來越緩
函數(shù)值開始增長較慢,到了某一值后增長速度極快;
函數(shù)值開始減小極快,到了某一值后減小速度較慢;
注意:利用函數(shù)的單調(diào)性,結(jié)合圖象還可以看出:
(1)在[a,b]上,值域是或;
(2)若,則;取遍所有正數(shù)當且僅當;
(3)對于指數(shù)函數(shù),總有;
(4)當時,若,則;
二、對數(shù)函數(shù)
(一)對數(shù)
1.對數(shù)的概念:一般地,如果,那么數(shù)叫做以為底的對數(shù),記作:(底數(shù),真數(shù),對數(shù)式)
說明:1注意底數(shù)的限制,且;
2;
3注意對數(shù)的書寫格式.
兩個重要對數(shù):
1常用對數(shù):以10為底的對數(shù);
2自然對數(shù):以無理數(shù)為底的對數(shù)的對數(shù).
對數(shù)式與指數(shù)式的互化
對數(shù)式指數(shù)式
對數(shù)底數(shù)冪底數(shù)
對數(shù)指數(shù)
真數(shù)冪
(二)對數(shù)函數(shù)
1、對數(shù)函數(shù)的概念:函數(shù),且叫做對數(shù)函數(shù),其中是自變量,函數(shù)的定義域是(0,+).
注意:1對數(shù)函數(shù)的定義與指數(shù)函數(shù)類似,都是形式定義,注意辨別。
如:,都不是對數(shù)函數(shù),而只能稱其為對數(shù)型函數(shù).
2對數(shù)函數(shù)對底數(shù)的限制:,且.
2、對數(shù)函數(shù)的性質(zhì):
a1
圖象特征
函數(shù)性質(zhì)
函數(shù)圖象都在y軸右側(cè)
函數(shù)的定義域為(0,+)
圖象關(guān)于原點和y軸不對稱
非奇非偶函數(shù)
向y軸正負方向無限延伸
函數(shù)的值域為R
函數(shù)圖象都過定點(1,0)
自左向右看,
圖象逐漸上升
自左向右看,
圖象逐漸下降
增函數(shù)
減函數(shù)
第一象限的圖象縱坐標都大于0
第一象限的圖象縱坐標都大于0
第二象限的圖象縱坐標都小于0
第二象限的圖象縱坐標都小于0
(三)冪函數(shù)
1、冪函數(shù)定義:一般地,形如的函數(shù)稱為冪函數(shù),其中為常數(shù).
2、冪函數(shù)性質(zhì)歸納.
(1)所有的冪函數(shù)在(0,+)都有定義,并且圖象都過點(1,1);
(2)時,冪函數(shù)的圖象通過原點,并且在區(qū)間上是增函數(shù).特別地,當時,冪函數(shù)的圖象下凸;當時,冪函數(shù)的圖象上凸;
(3)時,冪函數(shù)的圖象在區(qū)間上是減函數(shù).在第一象限內(nèi),當從右邊趨向原點時,圖象在軸右方無限地逼近軸正半軸,當趨于時,圖象在軸上方無限地逼近軸正半軸.
【高考數(shù)學復習基本初等函數(shù)知識點歸納】相關(guān)文章:
高考數(shù)學復習知識點歸納05-07
高考物理知識點復習歸納05-08