- 相關(guān)推薦
高考數(shù)學(xué)題型全歸納及總結(jié)
一、排列組合篇
1. 掌握分類計(jì)數(shù)原理與分步計(jì)數(shù)原理,并能用它們分析和解決一些簡單的應(yīng)用問題。
2. 理解排列的意義,掌握排列數(shù)計(jì)算公式,并能用它解決一些簡單的應(yīng)用問題。
3. 理解組合的意義,掌握組合數(shù)計(jì)算公式和組合數(shù)的性質(zhì),并能用它們解決一些簡單的應(yīng)用問題。
4. 掌握二項(xiàng)式定理和二項(xiàng)展開式的性質(zhì),并能用它們計(jì)算和證明一些簡單的問題。
5. 了解隨機(jī)事件的發(fā)生存在著規(guī)律性和隨機(jī)事件概率的意義。
6. 了解等可能性事件的概率的意義,會(huì)用排列組合的基本公式計(jì)算一些等可能性事件的概率。
7. 了解互斥事件、相互獨(dú)立事件的意義,會(huì)用互斥事件的概率加法公式與相互獨(dú)立事件的概率乘法公式計(jì)算一些事件的概率。
8. 會(huì)計(jì)算事件在n次獨(dú)立重復(fù)試驗(yàn)中恰好發(fā)生k次的概率.
二、立體幾何篇
1.有關(guān)平行與垂直(線線、線面及面面)的問題,是在解決立體幾何問題的過程中,大量的、反復(fù)遇到的,而且是以各種各樣的問題(包括論證、計(jì)算角、與距離等)中不可缺少的內(nèi)容,因此在主體幾何的總復(fù)習(xí)中,首先應(yīng)從解決“平行與垂直”的有關(guān)問題著手,通過較為基本問題,熟悉公理、定理的內(nèi)容和功能,通過對(duì)問題的分析與概括,掌握立體幾何中解決問題的規(guī)律--充分利用線線平行(垂直)、線面平行(垂直)、面面平行(垂直)相互轉(zhuǎn)化的思想,以提高邏輯思維能力和空間想象能力。
2. 判定兩個(gè)平面平行的方法:
(1)根據(jù)定義--證明兩平面沒有公共點(diǎn);
(2)判定定理--證明一個(gè)平面內(nèi)的兩條相交直線都平行于另一個(gè)平面;
(3)證明兩平面同垂直于一條直線。
三、數(shù)列問題篇
1. 在掌握等差數(shù)列、等比數(shù)列的定義、性質(zhì)、通項(xiàng)公式、前n項(xiàng)和公式的基礎(chǔ)上,系統(tǒng)掌握解等差數(shù)列與等比數(shù)列綜合題的規(guī)律,深化數(shù)學(xué)思想方法在解題實(shí)踐中的指導(dǎo)作用,靈活地運(yùn)用數(shù)列知識(shí)和方法解決數(shù)學(xué)和實(shí)際生活中的有關(guān)問題;
2. 在解決綜合題和探索性問題實(shí)踐中加深對(duì)基礎(chǔ)知識(shí)、基本技能和基本數(shù)學(xué)思想方法的認(rèn)識(shí),溝通各類知識(shí)的聯(lián)系,形成更完整的知識(shí)網(wǎng)絡(luò),提高分析問題和解決問題的能力,進(jìn)一步培養(yǎng)學(xué)生閱讀理解和創(chuàng)新能力,綜合運(yùn)用數(shù)學(xué)思想方法分析問題與解決問題的能力。
3. 培養(yǎng)學(xué)生善于分析題意,富于聯(lián)想,以適應(yīng)新的背景,新的設(shè)問方式,提高學(xué)生用函數(shù)的思想、方程的思想研究數(shù)列問題的自覺性、培養(yǎng)學(xué)生主動(dòng)探索的精神和科學(xué)理性的思維方法.
四、導(dǎo)數(shù)應(yīng)用篇
1. 導(dǎo)數(shù)概念的理解。
2. 利用導(dǎo)數(shù)判別可導(dǎo)函數(shù)的極值的方法及求一些實(shí)際問題的最大值與最小值。復(fù)合函數(shù)的求導(dǎo)法則是微積分中的重點(diǎn)與難點(diǎn)內(nèi)容。課本中先通過實(shí)例,引出復(fù)合函數(shù)的求導(dǎo)法則,接下來對(duì)法則進(jìn)行了證明。
3. 要能正確求導(dǎo),必須做到以下兩點(diǎn):
(1)熟練掌握各基本初等函數(shù)的求導(dǎo)公式以及和、差、積、商的求導(dǎo)法則,復(fù)合函數(shù)的求導(dǎo)法則。
(2)對(duì)于一個(gè)復(fù)合函數(shù),一定要理清中間的復(fù)合關(guān)系,弄清各分解函數(shù)中應(yīng)對(duì)哪個(gè)變量求導(dǎo)。
五、解析幾何(圓錐曲線)
1、很多高考問題都是以平面上的點(diǎn)、直線、曲線(如圓、橢圓、拋物線、雙曲線)這三大類幾何元素為基礎(chǔ)構(gòu)成的圖形的問題;
2、演繹規(guī)則就是代數(shù)的演繹規(guī)則,或者說就是列方程、解方程的規(guī)則。
2高考數(shù)學(xué)高分經(jīng)驗(yàn) 多做典型題多歸納總結(jié)
多做典型題
眾所周知,學(xué)好數(shù)學(xué)要多做題,多做題能熟能生巧,但是多做題并不等于濫做題、盲目做題,而是要多做典型有代表性的題,比如說每年的真題,各個(gè)區(qū)的模擬考試題,會(huì)做的就不做,專門做不熟的、針對(duì)自己薄弱的題型,反復(fù)做,只有熟能生巧后才能做題材速度上去,才能從量變到質(zhì)變產(chǎn)生一個(gè)飛躍。
善歸納總結(jié)
在復(fù)習(xí)過程中,不僅要做典型的題,而且還要善于歸納總結(jié)。有些同學(xué)就只喜歡做難題,而忽略了基礎(chǔ)忽略了做題后的歸納與總結(jié),總結(jié)出解題過程中的方法與技巧,總結(jié)出知識(shí)點(diǎn)內(nèi)在的區(qū)別與聯(lián)系。實(shí)際上,所謂的難題、綜合題都是由幾個(gè)知識(shí)點(diǎn)綜合在一起,如果你把基礎(chǔ)打扎實(shí)了,各個(gè)知識(shí)點(diǎn)弄通了,難題綜合題也就迎刃而解了,你沒有發(fā)現(xiàn)嗎?每個(gè)大題都有2-4個(gè)小問題,每個(gè)小問題單獨(dú)掰開來看就是一個(gè)基礎(chǔ)題,只不過是一個(gè)小問可能與前一個(gè)小問有關(guān)聯(lián)而已。只要你善于去歸納總結(jié),你就會(huì)發(fā)現(xiàn)各個(gè)知識(shí)點(diǎn)之間的內(nèi)在聯(lián)系,找到它們的關(guān)鍵的核心問題。
【高考數(shù)學(xué)題型全歸納及總結(jié)】相關(guān)文章:
高考數(shù)學(xué)導(dǎo)數(shù)的應(yīng)用題型的歸納總結(jié)03-09
關(guān)于高考數(shù)學(xué)的題型12-09
高考數(shù)學(xué)不等式題型及解題方法題型總結(jié)03-09
高考數(shù)學(xué)數(shù)列題型解題的方法總結(jié)03-09
高考數(shù)學(xué)棱錐定義與公式總結(jié)歸納03-09
高考數(shù)學(xué)函數(shù)的題型復(fù)習(xí)12-09
高考數(shù)學(xué)題型理解12-09