久久综合色一综合色88欧美|久久er热在这里只有精品66|国产福利一区二区不卡|日本精品动漫二区三区

    1. <address id="l3apk"><var id="l3apk"><source id="l3apk"></source></var></address>

      高等代數(shù)學(xué)習(xí)心得

      時(shí)間:2022-08-08 19:36:49 學(xué)習(xí)心得 我要投稿
      • 相關(guān)推薦

      高等代數(shù)學(xué)習(xí)心得

        我們從一些事情上得到感悟后,不如來(lái)好好地做個(gè)總結(jié),寫(xiě)一篇心得體會(huì),如此可以一直更新迭代自己的想法。那么好的心得體會(huì)是什么樣的呢?下面是小編為大家收集的高等代數(shù)學(xué)習(xí)心得,僅供參考,大家一起來(lái)看看吧。

      高等代數(shù)學(xué)習(xí)心得

      高等代數(shù)學(xué)習(xí)心得1

        當(dāng)你們正在《數(shù)學(xué)分析》5261課程時(shí),同時(shí)又要學(xué)《高4102等代數(shù)》課程。1653覺(jué)得高等代數(shù)與數(shù)學(xué)分析不太一樣,比較“另類(lèi)”。不一樣在于它研究的方法與數(shù)學(xué)分析相差太大,數(shù)學(xué)分析是中學(xué)數(shù)學(xué)的延續(xù),其內(nèi)容主要是中學(xué)的內(nèi)容加極限的思想而已,同學(xué)們接受起來(lái)比較容易。高等代數(shù)則不同,它在中學(xué)基本上沒(méi)有“根”。其思維方式與以前學(xué)的數(shù)學(xué)迥然不同,概念更加抽象,偏重思辨與證明。尤其是下學(xué)期,證明是主要部分,雖然學(xué)時(shí)不少,但是理解起來(lái)仍困難。它分兩個(gè)學(xué)期。我們上學(xué)期學(xué)的內(nèi)容,可以歸結(jié)為“一個(gè)問(wèn)題”和“兩個(gè)工具”。一個(gè)問(wèn)題是指解線性方程組的問(wèn)題,兩個(gè)工具指的是矩陣和向量。你可能會(huì)想:線性方程組我們學(xué)過(guò),而且解它用得著講一門(mén)課嗎?大家一定要明白,首先我們的方程組不像中學(xué)所學(xué)僅含2到3個(gè)方程,它只要用消元法即可容易地求出,這里的研究的是所有方程組的規(guī)律,也就是所必須找到4個(gè)以上方程組成的方程組的解的規(guī)律,這樣就比較難了,需要對(duì)方程組有個(gè)整體的認(rèn)識(shí);再者,數(shù)學(xué)的宗旨是將看似不同的事物或問(wèn)題將它們聯(lián)系起來(lái),抽象出它們?cè)跀?shù)學(xué)上的本質(zhì),然后用數(shù)學(xué)的工具來(lái)解決問(wèn)題。實(shí)際上,向量、矩陣、線性方程組都是基本數(shù)學(xué)工具。三者之間有著密切的聯(lián)系!它們可以互為工具,在今后的學(xué)習(xí)中,你們只要緊緊抓住三者之間的聯(lián)系,學(xué)習(xí)就有了主線了。向量我們?cè)谥袑W(xué)學(xué)過(guò)一些,物理課也講。

        中學(xué)學(xué)的是三維向量,在幾何中用有向線段表示,代數(shù)上用三個(gè)數(shù)的有序數(shù)組表示。那么我們線性代數(shù)中的向量呢,是將中學(xué)所學(xué)的向量進(jìn)行推廣,由三維到n維(n是任意正整數(shù)),由三個(gè)數(shù)的有序數(shù)組推廣到n維有序數(shù)組,中學(xué)的向量的性質(zhì)盡可能推廣到n維,這樣,可以解決更多的問(wèn)題;矩陣呢?就是一個(gè)方形的數(shù)表,有若干行、列構(gòu)成,這樣看起來(lái),概念上很好理解啊?墒茄芯科饋(lái)可不那么簡(jiǎn)單,我們以前的運(yùn)算是兩個(gè)數(shù)的運(yùn)算,而現(xiàn)在的運(yùn)算涉及的可是整個(gè)數(shù)表的運(yùn)算!可以想象,整個(gè)數(shù)表的運(yùn)算必然比兩個(gè)數(shù)的運(yùn)算難。但是我們不必怕,先記住并掌握運(yùn)算,運(yùn)算再難,多練幾遍必然就會(huì)了。關(guān)鍵是要理解概念與概念間的聯(lián)系。再進(jìn)一步說(shuō)吧:中學(xué)解方程組,有一個(gè)原則,就是一個(gè)方程解一個(gè)未知量。對(duì)于線性代數(shù)的線性方程組,方程的個(gè)數(shù)不一定等于未知量的個(gè)數(shù)。比如4個(gè)方程5個(gè)未知量,這樣就不可能有唯一的解,需要將一個(gè)未知量提出來(lái)作為“自由未知量”,也就是將之當(dāng)做參數(shù)(可以任意取值的常數(shù));還有,即使是方程個(gè)數(shù)與未知量個(gè)數(shù)相同,也未必有唯一的解,因?yàn)橛锌赡艹霈F(xiàn)方程“多余”的情況。(比如第三個(gè)方程是前兩個(gè)方程相加,那么第三個(gè)方程可以視為“多余”)

        總之,解方程可以先歸納出以下三大問(wèn)題:第一,有無(wú)多余方程;第二,解決了這三大問(wèn)題,方程組的解迎刃而解。我們結(jié)合矩陣、向量可以提出完全對(duì)應(yīng)的問(wèn)題。剛才講了,三者聯(lián)系緊密,比如一個(gè)方程將運(yùn)算符號(hào)和等號(hào)除去,就是一個(gè)向量;方程組將等號(hào)和運(yùn)算除去,就是一個(gè)矩陣!你們說(shuō)它們是不是聯(lián)系緊密?大家可不要小看這三問(wèn),我認(rèn)為它們可以作為學(xué)習(xí)上學(xué)期高代的`提綱挈領(lǐng)。下學(xué)期主要講“線性空間”和“線性變換”。所謂線性空間,就是將上學(xué)期所學(xué)的數(shù)域上的向量空間加以推廣,很玄是吧?首先數(shù)域上的向量空間,是將向量作為整體來(lái)研究,這就是我們大學(xué)所學(xué)的第一個(gè)“代數(shù)結(jié)構(gòu)”。所謂代數(shù)結(jié)構(gòu),就是由一個(gè)集合、若干種運(yùn)算構(gòu)成的數(shù)學(xué)的“大廈”,運(yùn)算使得集合中的元素有了聯(lián)系。中學(xué)有沒(méi)有涉及代數(shù)結(jié)構(gòu)啊?有的,比如實(shí)數(shù)域、復(fù)數(shù)域中的“域”就是含有四則運(yùn)算的代數(shù)結(jié)構(gòu)。

        而向量空間的集合是向量,運(yùn)算就兩個(gè):加法和數(shù)乘。起初向量及其運(yùn)算和上學(xué)期學(xué)的一樣?墒,它的形式有局限啊,數(shù)學(xué)家就想到,將其概念的本質(zhì)抽取出來(lái),他們發(fā)現(xiàn),向量空間的本質(zhì)就是八條運(yùn)算律,因此將它作為線性空間(也稱(chēng)向量空間)的公理化定義,作為原始的向量、加法、數(shù)乘未必再有原來(lái)的形式了。比如上學(xué)期學(xué)的數(shù)域上的多項(xiàng)式構(gòu)成的線性空間。繼而,我們將數(shù)學(xué)中的“映射”用在線性空間上,于是有了“線性變換”的概念。說(shuō)到底,線性變換就是線性空間保持線性運(yùn)算關(guān)系不變的自身到自身的“映射”。正因?yàn)楸3志性關(guān)系不變,所以線性空間的許多性質(zhì)在映射后得以保持。研究線性空間與線性變換的關(guān)鍵就是找到線性空間的“基”,只要通過(guò)基,可以將無(wú)數(shù)個(gè)向量的運(yùn)算通過(guò)基線性表示,也可以將線性變換通過(guò)基的變換線性表示!于是,線性空間的元素真正可以用上學(xué)期的“向量”表示了!線性變換可以用上學(xué)期的“矩陣”表示了!這是代數(shù)中著名的“同構(gòu)”的思想!通過(guò)這樣,將抽象的問(wèn)題具體化了,這也就是我們前邊說(shuō)的“矩陣”和“向量”是兩大工具的原因。同學(xué)們要記住,做線性空間與線性變換的題時(shí)這樣的轉(zhuǎn)化是主方向!進(jìn)一步:既然線性變換可以通過(guò)取基用矩陣表示,不同的基呢,對(duì)應(yīng)不同的矩陣。我們自然想到,能否適當(dāng)?shù)娜』,使得矩陣的表示盡可能簡(jiǎn)單。簡(jiǎn)單到極致,就是對(duì)角型。經(jīng)研究,發(fā)現(xiàn)若能轉(zhuǎn)成對(duì)角型的話,那么對(duì)角型上的元素是這樣變換(稱(chēng)相似變換)的不變量,這個(gè)不變量很重要,稱(chēng)為變換的“特征值”。矩陣相似變換成對(duì)角型是個(gè)很實(shí)用的問(wèn)題,結(jié)果,不是所有都能化對(duì)角,那么退一步,于是有了“若當(dāng)標(biāo)準(zhǔn)型“的概念,只要特征多項(xiàng)式能夠完全分解,就可以化若當(dāng)標(biāo)準(zhǔn)型,有一章的內(nèi)容專(zhuān)門(mén)研究它。這樣的對(duì)角型與若當(dāng)標(biāo)準(zhǔn)型有什么用呢?我們利用它是同一個(gè)變換在不同基下的矩陣表示,可以通過(guò)改變基使得研究線性變換變得簡(jiǎn)單。最后的“歐氏空間”許多人不理解,一句話,就是仿照我們可見(jiàn)的三維空間,對(duì)線性空間引進(jìn)度量,向量有長(zhǎng)度、有夾角、有內(nèi)積。歐氏空間有了度量后,線性空間的許多性質(zhì)變得很直觀且奇妙。我們要比較兩者的聯(lián)系與差別。此章主要講了兩種變換:對(duì)稱(chēng)變換與正交變換,正交變換是保持度量關(guān)系不變,對(duì)稱(chēng)變換在正交基下為對(duì)稱(chēng)陣。相似變換對(duì)角化問(wèn)題到了這里變成正交變換對(duì)角化問(wèn)題,在涉及對(duì)角化問(wèn)題時(shí),能用正交變換的盡量用正交變換,可以使得問(wèn)題更加的容易解決。說(shuō)到這里,大家對(duì)高代有了宏觀的認(rèn)識(shí)了。最后總結(jié)出高代的特點(diǎn),一是結(jié)構(gòu)緊密,整個(gè)課程的知識(shí)點(diǎn)互相之間有著千絲萬(wàn)縷的聯(lián)系,無(wú)論從哪一個(gè)角度切入,都可以牽一發(fā)而動(dòng)全身,整個(gè)課程就是鐵板一塊。二是它解決問(wèn)題的方法不再是像中學(xué)那樣的重視技巧,以“點(diǎn)”為主,而是從代數(shù)的“結(jié)構(gòu)”上,從宏觀上把握解決問(wèn)題的方案。這對(duì)大家是比較抽象,但是,沒(méi)有宏觀的理解,對(duì)此課程必然學(xué)不透徹!建議同學(xué)們邊比較變學(xué)習(xí),上學(xué)期的向量用中學(xué)的向量比較,下學(xué)期的向量用上學(xué)期的比較。在計(jì)算上理解概念,證明時(shí)注重整體結(jié)構(gòu)。關(guān)于證明,這里一時(shí)無(wú)法盡言,請(qǐng)看我的《證明題的證法之高代篇》

      高等代數(shù)學(xué)習(xí)心得2

        一、將三門(mén)基礎(chǔ)2113課作為一個(gè)整體去學(xué),摒棄孤立5261的學(xué)習(xí),提倡綜合4102的思考

        恩格斯曾經(jīng)說(shuō)1653過(guò):“數(shù)學(xué)是研究數(shù)和形的科學(xué)!边@位先哲對(duì)數(shù)學(xué)的這一概括,從現(xiàn)代數(shù)學(xué)的發(fā)展來(lái)看,已經(jīng)遠(yuǎn)遠(yuǎn)不夠準(zhǔn)確了,但這一概括卻點(diǎn)明了數(shù)學(xué)最本質(zhì)的研究對(duì)象,即為“數(shù)”與“形”。比如說(shuō),從“數(shù)”的研究衍生出數(shù)論、代數(shù)、函數(shù)、方程等數(shù)學(xué)分支;從“形”的研究衍生出幾何、拓?fù)涞葦?shù)學(xué)分支。20世紀(jì)以來(lái),這些傳統(tǒng)的數(shù)學(xué)分支相互滲透、相互交叉,形成了現(xiàn)代數(shù)學(xué)最前沿的研究方向,比如說(shuō),代數(shù)數(shù)論、解析數(shù)論、代數(shù)幾何、微分幾何、代數(shù)拓?fù)、微分拓(fù)涞鹊取?梢哉f(shuō),現(xiàn)代數(shù)學(xué)正朝著各種數(shù)學(xué)分支相互融合的方向繼續(xù)蓬勃地發(fā)展下去。

        數(shù)學(xué)分析、高等代數(shù)、空間解析幾何這三門(mén)基礎(chǔ)課,恰好是數(shù)學(xué)最重要的三個(gè)分支--分析、代數(shù)、幾何的最重要的基礎(chǔ)課程。根據(jù)課程的特點(diǎn),每門(mén)課程的學(xué)習(xí)方法當(dāng)然各不相同,但是如果不能以一種整體的眼光去學(xué)習(xí)和思考,即使每門(mén)課都得了A,也不見(jiàn)得就學(xué)的很好。學(xué)院的資深教授曾向我們抱怨:“有的問(wèn)題只要畫(huà)個(gè)圖,想一想就做出來(lái)了,怎么現(xiàn)在的學(xué)生做題,拿來(lái)就只知道死算,連個(gè)圖也不畫(huà)一下。”當(dāng)然,造成這種不足的原因肯定是多方面的。比如說(shuō),從教的角度來(lái)看,各門(mén)課程的教材或授課在某種程度上過(guò)于強(qiáng)調(diào)自身的特點(diǎn),很少以整體的眼光去講授課程或處理問(wèn)題,課程之間的相互聯(lián)系也涉及的較少;從學(xué)的角度來(lái)看,學(xué)生們大都處于孤立學(xué)習(xí)的狀態(tài),也就是說(shuō),孤立在某門(mén)課程中學(xué)習(xí)這門(mén)課程,缺乏對(duì)多門(mén)課程的整體把握和綜合思考。

        根據(jù)我的經(jīng)驗(yàn),將高等代數(shù)和空間解析幾何作為一個(gè)整體去學(xué),效果肯定比單獨(dú)學(xué)好,因?yàn)楦叩却鷶?shù)中最核心的概念是“線性空間”,這是一個(gè)幾何對(duì)象;而且高等代數(shù)中的很多內(nèi)容都是空間解析幾何自然的延續(xù)和推廣。另外,高等代數(shù)中還有很多分析方面的技巧,比如說(shuō)“攝動(dòng)法”,它是一種分析的方法,可以讓我們把問(wèn)題從一般矩陣化到非異矩陣的情形。因此,要學(xué)好高等代數(shù),首先要跳出高等代數(shù),將三門(mén)基礎(chǔ)課作為一個(gè)整體去學(xué),摒棄孤立的學(xué)習(xí),提倡綜合的思考。

        二、正確認(rèn)識(shí)代數(shù)學(xué)的特點(diǎn),在抽象和具體之間找到結(jié)合點(diǎn)

        代數(shù)學(xué)(包括高等代數(shù)和抽象代數(shù))給人的印象就是“抽象”,這與另外兩門(mén)基礎(chǔ)課有很大的不同。以“線性空間”的定義為例,集合V上定義了加法和數(shù)乘兩種運(yùn)算,并且這兩種運(yùn)算滿足八條性質(zhì),那么V就稱(chēng)為線性空間。我想第一次學(xué)高等代數(shù)的同學(xué)都會(huì)認(rèn)為這個(gè)定義太抽象了。其實(shí)在高等代數(shù)中,這樣抽象的定義比比皆是。不過(guò)這樣的抽象是有意義的,因?yàn)槲覀兛梢则?yàn)證三維歐氏空間、連續(xù)函數(shù)全體、多項(xiàng)式全體、矩陣全體都是線性空間,也就是說(shuō),線性空間是從許多具體例子中抽象出來(lái)的概念,具有絕對(duì)的一般性。代數(shù)學(xué)的研究方法是,從許多具體的例子中抽象出某個(gè)概念;然后通過(guò)代數(shù)的方法對(duì)這一概念進(jìn)行研究,得到一般的結(jié)論;最后再將這些結(jié)論返回到具體的例子中,得到各種運(yùn)用。因此,“具體--抽象--具體”,這便是代數(shù)學(xué)的特點(diǎn)。

        在認(rèn)識(shí)了代數(shù)學(xué)的特點(diǎn)后,就可以有的放矢地學(xué)習(xí)高等代數(shù)了。我們可以通過(guò)具體的例子去理解抽象的定義和證明;我們可以將定理的結(jié)論運(yùn)用到具體的例子中,從而加深對(duì)定理的理解和掌握;我們還可以通過(guò)具體例子的啟發(fā),去發(fā)現(xiàn)和證明一些新的結(jié)果。因此,要學(xué)好高等代數(shù),就需要正確認(rèn)識(shí)抽象和具體的辯證關(guān)系,在抽象和具體之間找到結(jié)合點(diǎn)。

        三、高等代數(shù)不僅要學(xué)代數(shù),也要學(xué)幾何,更要在代數(shù)和幾何之間建立一座橋梁

        隨著時(shí)代的變遷,高等代數(shù)的教學(xué)內(nèi)容和方式也在不斷的發(fā)展。大概在90年代之前,國(guó)內(nèi)高校的高等代數(shù)教材大多以“矩陣論”作為中心,比較強(qiáng)調(diào)矩陣論的相關(guān)技巧;90年代之后,國(guó)內(nèi)高校的高等代數(shù)教材漸漸地改變?yōu)橐浴熬性空間理論”作為中心,比較強(qiáng)調(diào)幾何的意義。作為縮影,復(fù)旦的高等代數(shù)教材也經(jīng)歷了這樣一個(gè)變化過(guò)程,1993年之前采用的屠伯塤老師的教材強(qiáng)調(diào)“矩陣論”;1993年之后采用的姚慕生老師的教材強(qiáng)調(diào)“線性空間理論”。從單純重視“代數(shù)”到“代數(shù)”與“幾何”并重,這其實(shí)是高等代數(shù)教學(xué)觀念的`一種全球性的改變,可能這種改變與現(xiàn)代數(shù)學(xué)的發(fā)展密切相關(guān)吧!

        學(xué)好高等代數(shù)的有效方法應(yīng)該是:

        深入理解幾何意義、熟練掌握代數(shù)方法。

        其次,高等代數(shù)中很多問(wèn)題都是幾何的問(wèn)題,我們經(jīng)常將幾何的問(wèn)題代數(shù)化,然后用代數(shù)的方法去解決它。當(dāng)然,對(duì)于一些代數(shù)的問(wèn)題,我們有時(shí)也將其幾何化,然后用幾何的方法去解決它。

        最后,代數(shù)和幾何之間存在一座橋梁,這就是代數(shù)和幾何之間的轉(zhuǎn)換語(yǔ)言。有了這座橋梁,我們就可以在代數(shù)和幾何之間來(lái)去自由、游刃有余。因此,要學(xué)好高等代數(shù),不僅要學(xué)代數(shù),也要學(xué)幾何,更要在代數(shù)和幾何之間建立一座橋梁。

        四、學(xué)好教材,用好教參,練好基本功

        復(fù)旦現(xiàn)行的高等代數(shù)教材是姚慕生老師、吳泉水老師編著的《高等代數(shù)學(xué)(第二版)》。這本教材從1993年開(kāi)始沿用至今,已有近20年的歷史。教材內(nèi)容翔實(shí)、重點(diǎn)突出、表述清晰、習(xí)題豐富,即使與全國(guó)各高校的高等代數(shù)教材相比,也不失為出類(lèi)拔萃之作。

        復(fù)旦現(xiàn)行的高等代數(shù)教學(xué)參考書(shū)是姚慕生老師編著的《高等代數(shù)學(xué)習(xí)方法指導(dǎo)(第二版)》(因?yàn)榉饷鏋榘咨,俗稱(chēng)“白皮書(shū)”)。這本教參書(shū)是數(shù)院本科生必備的寶典,基本上人手一冊(cè),風(fēng)行程度可見(jiàn)一斑。

        要學(xué)好高等代數(shù),學(xué)好教材是最低的要求。另外,如何用好教參書(shū),也是一個(gè)重要的環(huán)節(jié)。很多同學(xué)購(gòu)買(mǎi)教參書(shū),主要是因?yàn)榻滩睦锏牟糠肿鳂I(yè)(包括一些很難的證明題)都可以在教參書(shū)上找到答案。當(dāng)然,這一點(diǎn)無(wú)可厚非,畢竟這就是教參書(shū)的功能嘛!但是,我還是希望一年級(jí)的新生能正確地使用教參書(shū),遇到問(wèn)題首先自己獨(dú)立思考,實(shí)在想不出,再去看懂教參書(shū)上的解答,這樣才能達(dá)到提高能力、鍛煉思維的效果。注意:既不獨(dú)立思考,又不看懂教參書(shū)上的解答,只是抄襲,這對(duì)自己來(lái)說(shuō)是一種極不負(fù)責(zé)的行為,希望大家努力避免!

        最后,我愿以華羅庚先生的一句詩(shī)“勤能補(bǔ)拙是良訓(xùn),一份辛勤一份才”與大家共勉,祝大家不斷進(jìn)步、學(xué)業(yè)有成!

      高等代數(shù)學(xué)習(xí)心得3

        代數(shù)學(xué)從高等代數(shù)的問(wèn)題出發(fā),又發(fā)展成為包括許多獨(dú)立分支的一個(gè)大的數(shù)學(xué)科目,比如:多項(xiàng)式代數(shù),線性代數(shù)等。代數(shù)學(xué)研究的對(duì)象也已不僅是數(shù),還有矩陣,向量,向量空間的變換等。對(duì)于這些對(duì)象,都可以進(jìn)行運(yùn)算。雖然也叫做加法或乘法,但是關(guān)于書(shū)的基本運(yùn)算定律,有時(shí)不再保持有效。因此代數(shù)學(xué)的內(nèi)容可以概括為研究帶有運(yùn)算的一些集合,在數(shù)學(xué)中把這樣的一些集合叫做代數(shù)系統(tǒng)。的算為效men:比如:群,環(huán),域等。

        多項(xiàng)式是一類(lèi)最常見(jiàn),最簡(jiǎn)單的函數(shù),他的應(yīng)用非常廣泛。多項(xiàng)式理論是以代數(shù)方程的根的計(jì)算和分布作為中心問(wèn)題的,也叫做方程論。研究多項(xiàng)式理論,主要在于探討代數(shù)方程的性質(zhì),從而尋找簡(jiǎn)易的解方程的方法。

        多項(xiàng)式代數(shù)所研究額內(nèi)容,包括整除性理論,最大公因式,重因式等。這些大體和中學(xué)代數(shù)里的內(nèi)容相同。多項(xiàng)式的整除性質(zhì)對(duì)于解代數(shù)方程是很有用的。解代數(shù)方程無(wú)非就是求對(duì)應(yīng)多項(xiàng)式的零點(diǎn),零點(diǎn)不存在的時(shí)候,多對(duì)應(yīng)的代數(shù)方程就沒(méi)有解。

        我們把一次方程叫做線性方程,討論線性方程的代數(shù)叫做線性代數(shù)。在線性代數(shù)中最重要的內(nèi)容就是行列式和矩陣。

        行列式的概念最早是由十七世界日本數(shù)學(xué)家孝和提出來(lái)的。他在寫(xiě)了一部叫做《解伏題之法》的著作,標(biāo)題的意思是解行列式問(wèn)題的方法,書(shū)里對(duì)行列式的概念和他的展開(kāi)已經(jīng)有了清楚的敘述。歐洲第一個(gè)提出行列式概念的是德國(guó)的數(shù)學(xué)家萊布尼茨。德國(guó)數(shù)學(xué)家雅可比總結(jié)并提出了行列式的系統(tǒng)理論。

        行列式有一定的計(jì)算規(guī)則,利用行列式可以把一個(gè)線性方程組的解表示成公式,因此行列式是解線性方程組的工具。行列式可以把一個(gè)線性方程組的解表示成公式,也就是說(shuō)行列式代表著一個(gè)數(shù)。

        因?yàn)樾辛惺揭笮袛?shù)等于列數(shù),排成的表總是正方形的,通過(guò)對(duì)它的研究又發(fā)現(xiàn)了矩陣的理論。矩陣也是由數(shù)排成行和列的數(shù)表,可是行數(shù)和列數(shù)相等也可以不相等。

        矩陣和行列式是兩部完全不同的概念,行列式代表著一個(gè)數(shù),而矩陣僅僅是一些數(shù)的.有順序的擺法。利用矩陣這個(gè)工具,可以把線性方程組中的系數(shù)組成向量空間中的向量,這樣對(duì)于一個(gè)多元線性方程組的解的情況,以及不同解之間的關(guān)系等等一系列理論上的問(wèn)題,都可以得到徹底的解決。矩陣的應(yīng)用是多方面的,不僅在數(shù)學(xué)領(lǐng)域里,而且在力學(xué),物理,科技等方面都有十分廣泛的應(yīng)用。

        高等代數(shù)在初等代數(shù)的基礎(chǔ)上研究對(duì)象進(jìn)一步擴(kuò)充,還引入了最基本的集合,向量和向量空間等。這些量具有和數(shù)相類(lèi)似的運(yùn)算特點(diǎn),不過(guò)研究的方法和運(yùn)算的方法都更加繁瑣。

        集合是具有某種屬性的事物的全體:向量是除了具有數(shù)值,同時(shí)還具有方向的量,向量空間也叫線性空間,是由許多向量組成的并且符合某些特定運(yùn)算的規(guī)則的集合。向量空間中的元素已經(jīng)不只是數(shù),而是向量了,其運(yùn)算性質(zhì)也有很大的不同了。

        在高等代數(shù)的發(fā)展過(guò)程中,許多數(shù)學(xué)家都做出了杰出的貢獻(xiàn),伽羅華就是其中一位,伽羅華在臨死前預(yù)測(cè)自己難以擺脫死亡的命運(yùn),所以曾連夜給朋友寫(xiě)信,倉(cāng)促的把自己生平的數(shù)學(xué)研究心得扼要寫(xiě)出,并附以論文手稿。他在給朋友舍瓦利葉的信中說(shuō):我在分析方法做出了一些新發(fā)現(xiàn),有些是關(guān)于方程論的,有些是關(guān)于整函數(shù)的……,公開(kāi)請(qǐng)求雅可比或高斯,不是對(duì)這些定理的證明的正確定而是對(duì)這些定理的重要性發(fā)表意見(jiàn)。我希望將來(lái)有人發(fā)現(xiàn)消除所有這些混亂對(duì)他們是有益的。

        伽羅華死后,按照他的遺愿,舍瓦利把他的信發(fā)表在《百科評(píng)論》中。他的論文手稿過(guò)了14年,才由劉維爾編輯出版了他的部分文章,并向數(shù)學(xué)界推薦。隨著時(shí)間的推移,伽羅華的研究成果的重要意義愈來(lái)愈為人們認(rèn)識(shí)。伽羅華雖然十分年經(jīng),但他在數(shù)學(xué)史上作出的貢獻(xiàn),不僅解決了幾個(gè)世紀(jì)以來(lái)一直沒(méi)有解決 的代數(shù)解問(wèn)題,更重要的是他在解決這個(gè)問(wèn)題提出了群的概念,并由此發(fā)展了一系列一整套關(guān)于群和域的理論,開(kāi)辟了代數(shù)學(xué)的一個(gè)嶄新的天地,直接影響了代數(shù)學(xué)研究方法的變革。從此,代數(shù)學(xué)不再以方程理論為中心內(nèi)容,而轉(zhuǎn)向?qū)Υ鷶?shù)結(jié)構(gòu)性質(zhì)的研究,促進(jìn)了代數(shù)學(xué)的進(jìn)一步發(fā)展。

        高等代數(shù)不是一門(mén)孤立的學(xué)科,它和幾何學(xué),分析數(shù)學(xué)等有密切聯(lián)系的同時(shí),又具有獨(dú)特的方面。

        首先,代數(shù)運(yùn)算是有限次的,而且缺乏連續(xù)性的概念,也就是說(shuō),代數(shù)學(xué)主要是關(guān)于離散性的。盡管在現(xiàn)實(shí)中連續(xù)性和不連續(xù)性是辯證統(tǒng)一的,但是為了認(rèn)識(shí)現(xiàn)實(shí),有時(shí)候需要把它分成幾個(gè)部分,然后分別的研究認(rèn)識(shí),在綜合起來(lái),就得到對(duì)現(xiàn)實(shí)的總的認(rèn)識(shí)。這是我們認(rèn)識(shí)事物的簡(jiǎn)單但是科學(xué)的重要手段,也是代數(shù)學(xué)的基本重要思想和方法。代數(shù)學(xué)注意到離散關(guān)系,并不能說(shuō)明它的特點(diǎn),時(shí)間已經(jīng)多次,多方位的證明了代數(shù)學(xué)的這一特點(diǎn)是有效的。

        其次,代數(shù)學(xué)除了對(duì)物理,化學(xué)等學(xué)科有直接的實(shí)踐意義,就數(shù)學(xué)本身來(lái)說(shuō),代數(shù)學(xué)也有重要的地位。代數(shù)學(xué)中發(fā)生的許多新的概念和思想,大大豐富了數(shù)學(xué)的許多分支,成為眾多學(xué)科的共同基礎(chǔ)。

        學(xué)習(xí)高等代數(shù),學(xué)習(xí)它的理論十分重要,但學(xué)習(xí)它的同時(shí)潛心領(lǐng)悟它光輝奪目的數(shù)學(xué)思想則尤為可貴,因?yàn)樗笇?dǎo)我們的學(xué)習(xí),對(duì)我們的生活,工作等其他社會(huì)活動(dòng)方法具有廣泛的導(dǎo)向作用。

      高等代數(shù)學(xué)習(xí)心得4

        作為一個(gè)過(guò)來(lái)人,我覺(jué)得這是比較正常的,題主不需要有多余焦慮。在我大一剛開(kāi)始學(xué)數(shù)分和高代時(shí),整個(gè)思維模式也受到了“新數(shù)學(xué)”的洗禮,有一個(gè)適應(yīng)的過(guò)程?赡埽瑢(duì)于大學(xué)之前沒(méi)怎么接觸過(guò)這些課程的大部分人,都會(huì)有與你類(lèi)似的感受。

        反正我們班在大一之后,有好多棄坑轉(zhuǎn)專(zhuān)業(yè)的,認(rèn)為大學(xué)“數(shù)學(xué)”跟想象的不一樣,整天就是概念證明啥的,有些枯燥無(wú)味。

        我想這主要是因?yàn)槲覀儽恢袑W(xué)的數(shù)學(xué)束縛太久,習(xí)慣了“計(jì)算式”的數(shù)學(xué)。

        想一想,我們?cè)诖髮W(xué)之前所接觸的數(shù)學(xué),主要是初等代數(shù),平面和立體幾何,三角函數(shù)和圓錐曲線,多項(xiàng)式和不等式等內(nèi)容,課上所學(xué)也注重技巧的運(yùn)用,和形式的計(jì)算及簡(jiǎn)單的推導(dǎo)。事實(shí)上,這些絕大多數(shù)是三百年前甚至兩千年前的知識(shí),關(guān)于現(xiàn)代數(shù)學(xué)的涉及基本沒(méi)有。

        即使高中時(shí)接觸到了導(dǎo)數(shù),極值等有關(guān)極限的概念,但沒(méi)有講更深。很多概念,還是停留在特定模式的計(jì)算和“只可意會(huì)不可言傳”的理解層次上。

        而近代數(shù)學(xué)的發(fā)展,特別是分析的嚴(yán)謹(jǐn)化以來(lái),“數(shù)學(xué)的.本質(zhì)已經(jīng)不是計(jì)算,對(duì)數(shù)學(xué)的精通不意味著能夠做復(fù)雜計(jì)算或者熟練推演符號(hào)。近代數(shù)學(xué)的重心已從計(jì)算求解轉(zhuǎn)變?yōu)樽⒅乩斫獬橄蟮母拍詈完P(guān)系。

        證明不僅僅是按照規(guī)則變換對(duì)象,而是從概念出發(fā)進(jìn)行邏輯推演!(出自微信公眾號(hào):中國(guó)科學(xué)院數(shù)學(xué)與系統(tǒng)科學(xué)研究院—數(shù)學(xué)是什么?)所以,從高中到大學(xué),所學(xué)的數(shù)學(xué),內(nèi)容上可以說(shuō)是有了質(zhì)的提升和深化。尤其數(shù)分里,很多知識(shí)點(diǎn)的定義,真真表現(xiàn)了分析的嚴(yán)謹(jǐn)和自成體系的理論。像極限的表述,就把一個(gè)腦海里變動(dòng)的過(guò)程所導(dǎo)致的結(jié)果,合理地用定性的語(yǔ)言作了描述。

        這很“數(shù)學(xué)”,不再是意會(huì)的說(shuō)不清道不明。雖然會(huì)遇到困難,但是我相信當(dāng)你耐心地鉆進(jìn)去,體會(huì)概念之間的聯(lián)系,證明的精巧和嚴(yán)謹(jǐn)會(huì)極大地刺激你的求知欲,這是數(shù)學(xué)專(zhuān)業(yè)學(xué)生的必經(jīng)之路。

        我認(rèn)為你目前的狀態(tài),首先要能清楚地理解每一個(gè)概念和定義。如果有不清晰的點(diǎn),請(qǐng)教一下老師,這是事半功倍的,因?yàn)橐岳蠋煻嗄甑臄?shù)學(xué)功底和教學(xué)經(jīng)驗(yàn),可以幫助你更準(zhǔn)確地把握一些關(guān)鍵知識(shí)點(diǎn)和定理的運(yùn)用,平時(shí)要及時(shí)地多做練習(xí),掌握一些解題的技巧。

        可以買(mǎi)一些教材配套的參考書(shū)啥的,遇到不會(huì)的,學(xué)習(xí)一下標(biāo)準(zhǔn)的解答,也不要死磕,畢竟沒(méi)有那么多時(shí)間和精力。一切學(xué)習(xí),都是從模仿開(kāi)始的,根據(jù)書(shū)上定理或者例題的證明思路,要學(xué)著去嘗試證明別的題。

        總之,要多讀,多想,多做,這樣你的學(xué)習(xí)能力的積累和理解力才能提升。學(xué)好這些基礎(chǔ)課是極其重要的,后續(xù)的很多課程:像實(shí)變函數(shù)、泛函分析,抽象代數(shù)等都是數(shù)分高代的抽象版,如果一開(kāi)始的學(xué)習(xí)里積攢很多不扎實(shí)的點(diǎn),會(huì)讓以后變得更加難以捉摸。

        我自己現(xiàn)在就是,當(dāng)開(kāi)始真正研究問(wèn)題時(shí),不得不耗費(fèi)精力去彌補(bǔ)之前的不足之處。

        守得云開(kāi)見(jiàn)月明,我覺(jué)得如果你是真正愛(ài)數(shù)學(xué),能作為一名數(shù)學(xué)專(zhuān)業(yè)的學(xué)生去感受數(shù)學(xué)所表現(xiàn)出的優(yōu)美和深刻是很幸運(yùn)的,你有機(jī)會(huì)去真正理解數(shù)學(xué)是什么?加油,我相信你會(huì)做的越來(lái)越好

      高等代數(shù)學(xué)習(xí)心得5

        雖然不是數(shù)學(xué)系學(xué)生(化學(xué)系學(xué)生),但是覺(jué)得也勉強(qiáng)可以回答一下。

        數(shù)學(xué)分析我也坐等大佬填坑,我數(shù)學(xué)分析學(xué)的并不好;高等代數(shù)倒是可以說(shuō)說(shuō)一點(diǎn)一孔之見(jiàn),有點(diǎn)長(zhǎng),歡迎友好交流。

        高等代數(shù)是研究線性關(guān)系的代數(shù)學(xué),是當(dāng)代代數(shù)學(xué)的基礎(chǔ)。那么既然提到線性關(guān)系,那么最容易想到的一定是一次齊次多項(xiàng)式(不論是一元多項(xiàng)式,如#FormatImgID_0#,或者多元多項(xiàng)式#FormatImgID_1#),你可以想一下,在同一平面內(nèi)的兩條直線,有哪幾種關(guān)系?

        這個(gè)我想大家都想的明白:相交、平行或者重合。相互“平行”的幾個(gè)一次齊次多項(xiàng)式組成的方程(條件獨(dú)立)不就是線性方程組嗎?相互“相交”的不就是多項(xiàng)式環(huán)(幾個(gè)多項(xiàng)式依賴(lài)于乘法結(jié)合)?相互“重合”的不就是重因式嗎?(重合可以看做相交的特殊情況,就是有解的情況下有無(wú)窮解,所以劃到多項(xiàng)式環(huán)一點(diǎn)問(wèn)題沒(méi)有)

        所以,國(guó)內(nèi)較為常見(jiàn)的打開(kāi)思路是要么先講一元多項(xiàng)式環(huán)(或者多項(xiàng)式環(huán)),以張賢科先生《高等代數(shù)學(xué)》和孟道驥先生《高等代數(shù)與解析幾何》的書(shū)為例;要么先講線性方程組,以丘維聲先生《高等代數(shù)》為例。姚慕生老師的書(shū)《高等代數(shù)學(xué)》開(kāi)篇就是行列式,按照個(gè)人觀點(diǎn)來(lái)看其實(shí)有問(wèn)題的。從行列式的三種定義(從線性變換對(duì)應(yīng)矩陣表示的角度來(lái)講,明顯不合適,觀點(diǎn)太超前了;從映射的角度來(lái)講,對(duì)初學(xué)者太抽象;從逆序數(shù)組合乘積再求和來(lái)講,沒(méi)有直觀意義,只是淪為計(jì)算工具)來(lái)看,其十分不適合放在開(kāi)篇第一章的位置。相應(yīng)的,我是非常不待見(jiàn)考研數(shù)學(xué)線性代數(shù)經(jīng)典書(shū)籍同濟(jì)版本的線性代數(shù)的,這書(shū)我相信開(kāi)篇行列式的打開(kāi)方式令無(wú)數(shù)考研同學(xué)對(duì)于代數(shù)從此一葉障目,不見(jiàn)泰山。

        個(gè)人比較推崇丘維聲老師的思路。原因有以下幾點(diǎn):

        第一,不僅結(jié)構(gòu)相對(duì)清晰,而且思路敘述相對(duì)完備。舉個(gè)例子,從線性方程組的完全求解(即完全解決線性方程組的求解方法——Gauss-Jordan算法和解的結(jié)構(gòu))開(kāi)始,第一章敘述求解方法,(第二章敘述行列式,我覺(jué)得這是一個(gè)敗筆。我本人也曾用他的教材授過(guò)一次課,跳過(guò)完全沒(méi)問(wèn)題,一個(gè)跳過(guò)去完全不影響以后發(fā)展的章節(jié)說(shuō)明其在結(jié)構(gòu)上是贅余的,所以說(shuō)是敗筆)第三章通過(guò)n維向量空間作為腳手架來(lái)解決解的結(jié)構(gòu)問(wèn)題,接著引出矩陣(系數(shù)矩陣)的表示方法,引出矩陣解法。這一系列線性代數(shù)的基本概念都在解決線性方程組求解的問(wèn)題中產(chǎn)生,并發(fā)揮作用,證明也很大程度上依賴(lài)線性方程組的基本理論,可以說(shuō)結(jié)構(gòu)相對(duì)清晰,中間為什么引入向量敘述也算是比較充分(但是個(gè)人在授課時(shí)依然傾向于讓學(xué)生在觀察求解線性方程組時(shí)系數(shù)的變化情況而引入,而不是先引入再告訴你聯(lián)系,覺(jué)得這樣更有邏輯些,但是畢竟有所提及,解釋問(wèn)題)。

        我同意這樣的看法:代數(shù)學(xué)是“生產(chǎn)定理的機(jī)器”,是研究結(jié)構(gòu)的學(xué)科。有一個(gè)清晰的結(jié)構(gòu)很重要,但敘述思想與概念的來(lái)源同樣非常重要,因?yàn)檫@樣的想法可以指導(dǎo)以后的認(rèn)知,這是真正的授之以漁。

        第二,定理內(nèi)容深刻,進(jìn)行了很大推廣,在推廣過(guò)程中讓讀者意識(shí)到每個(gè)條件的意義。第五章是特征值與特征向量,第六章是二次型(后二章里面用了大量一元多項(xiàng)式環(huán)的內(nèi)容,雖然結(jié)論深刻了,但是要求提高了)(至此線性代數(shù)部分結(jié)束,轉(zhuǎn)入高等代數(shù)部分),僅靠上半本和下半本的第七章就可以對(duì)于矩陣的特征值和特征向量有相對(duì)充分的認(rèn)識(shí)了(當(dāng)然,有些問(wèn)題還是沒(méi)能夠解決,比如怎樣的多項(xiàng)式的特征值重?cái)?shù)不變)。之后的第十章討論了具有度量的線性空間,并不限于實(shí)數(shù)域與復(fù)數(shù)域,還推廣到了一般域(通常這個(gè)域的特征不為2)的情況,敘述正交空間與辛空間,這其實(shí)對(duì)于矢量與場(chǎng)論分析基礎(chǔ)有幫助(比如,正交變換作用于一個(gè)標(biāo)準(zhǔn)正交基#FormatImgID_2#可得到另一個(gè)標(biāo)準(zhǔn)正交基#FormatImgID_3#等價(jià)于兩個(gè)標(biāo)準(zhǔn)正交基做的非退化線性變換必為正交變換,這在有限維實(shí)內(nèi)積空間或酉空間不可以如此論述,因?yàn)檫@兩個(gè)基不是數(shù)域上的`向量,是一般域上的),這個(gè)是很好的,也幫助讀者更好認(rèn)識(shí)從實(shí)數(shù)域、經(jīng)過(guò)復(fù)數(shù)域再到一般數(shù)域,因?yàn)檎ㄐ赃@一關(guān)鍵(不然就沒(méi)有辦法定義內(nèi)積)而不斷放低條件的過(guò)程。

        第三,例題豐富,便于自學(xué),并至少試圖進(jìn)行廣泛應(yīng)用。表明所學(xué)的意義和用法,這一點(diǎn)也非常重要。我們當(dāng)下很多的學(xué)生只是單純的學(xué)習(xí)數(shù)學(xué)知識(shí),但是對(duì)于學(xué)科的基本思想與方法全然無(wú)睹,導(dǎo)致的嚴(yán)重后果是當(dāng)需要用到這些知識(shí)的時(shí)候?qū)W生們要么根本不記得多少,要么根本想不起來(lái)用。個(gè)人認(rèn)為大學(xué)最重要的是培養(yǎng)的是人的思維方式,而不是知識(shí)(當(dāng)然不是不重要,只是有了這些才有真正意義上的知識(shí))。讓讀者能夠?qū)W以致用,這一點(diǎn)上,在國(guó)內(nèi)的基礎(chǔ)教材內(nèi),丘維聲老師的書(shū)確實(shí)做的非常好。

        以上既是丘老師書(shū)的優(yōu)點(diǎn),也是在閱讀的時(shí)候需要注意的:注意敘述的時(shí)候課程或者教材結(jié)構(gòu)的合理性;注重每個(gè)定理的意義和條件的意義;進(jìn)行應(yīng)用和推廣時(shí)應(yīng)注意什么。

        這個(gè)其實(shí)也是是學(xué)習(xí)數(shù)學(xué)的一般思維。當(dāng)然針對(duì)于代數(shù),我也有其他的一些想法與認(rèn)識(shí),(敲黑板),以下是學(xué)習(xí)代數(shù)時(shí)應(yīng)該注意的想法和方式:

        第一,注意有限與無(wú)限的區(qū)別。無(wú)限和有限的意義往往不一樣,這個(gè)在有限維里成立的命題,未必可以推廣到無(wú)限維。比如伴隨變換在有限維酉空間里一定有,但是在無(wú)限維酉空間里就不一定有了。但是線性空間的補(bǔ)空間在有限維和無(wú)限維空間里都是有的。

        第二,要有“基”和維數(shù)的意識(shí),這是(有限維的)線性代數(shù)獨(dú)有的。研究一個(gè)有限維的線性空間只需要找到一個(gè)基,研究一個(gè)有限維線性空間上的線性變換除了找對(duì)應(yīng)關(guān)系,還是要找一個(gè)基(線性映射找兩個(gè))。有了基才有坐標(biāo)的意義,度量才有了意義。與基相關(guān)聯(lián)的還有維數(shù),這同樣是描述線性空間的核心數(shù)學(xué)量(比如,兩個(gè)有限維實(shí)內(nèi)積空間同構(gòu)當(dāng)且僅當(dāng)二者同維)。我所指的基,可不僅僅指線性空間中的基,還有多項(xiàng)式環(huán)中的不可約多項(xiàng)式(這往往倒是無(wú)限多的),不可約多項(xiàng)式和線性空間的基看似是不同的概念,卻都是構(gòu)筑相應(yīng)結(jié)構(gòu)(基域上多項(xiàng)式環(huán)和基域上有限維線性空間)的“磚石”。這個(gè)觀點(diǎn)非常重要,以后講述抽象代數(shù),這個(gè)“磚石”有名字的,叫做“生成元”,甚至于學(xué)習(xí)群表示論,我們更關(guān)心群的不可約表示,就是因?yàn)檫@個(gè)。

        第三,以研究態(tài)射為高等代數(shù)的核心。當(dāng)然這也是后續(xù)課程抽象代數(shù)學(xué)的核心。高等代數(shù)的重難點(diǎn)就是線性空間與線性映射,搞不清楚這一點(diǎn)就沒(méi)辦法弄清楚結(jié)構(gòu)問(wèn)題,或者“作用效果”。解決問(wèn)題一定要抓住要解決所需的必要條件,比如做一個(gè)矩陣分解,我得知道矩陣分解能夠體現(xiàn)什么特征。比如,我做一個(gè)極分解,結(jié)果相當(dāng)于做第一類(lèi)正交變換和仿射變換這說(shuō)明我作用這個(gè)矩陣可以得到這樣的效果(類(lèi)比于經(jīng)典力學(xué)中曲線運(yùn)動(dòng),我將力分解為切向力和法向力,每個(gè)分力都要承擔(dān)效果的)。

        第四,學(xué)習(xí)抓臨界條件來(lái)解決關(guān)鍵問(wèn)題,不要隨意丟棄“腳手架”。秩的概念的本質(zhì)就是向量集合的最小的生成元集中元素的個(gè)數(shù),最小多項(xiàng)式更是如此(次數(shù)最低的零化多項(xiàng)式)。最小本質(zhì)就是一種臨界條件(有點(diǎn)類(lèi)似于物理中的臨界問(wèn)題,或者邊界條件?),臨界狀態(tài)往往是突破口;還有一些用過(guò)的工具用過(guò)了不代表沒(méi)用,比如向量組提出其實(shí)可以看做是用來(lái)解決線性方程組問(wèn)題的,但是解決了不代表就沒(méi)其他用了,相應(yīng)的,在度量上,其依然發(fā)揮著重要作用。

        這就是個(gè)人的一點(diǎn)觀點(diǎn),不局限于高等代數(shù)(也一定不能局限,否則難以提出真正的高觀點(diǎn)),再次表示歡迎真正的大佬前來(lái)指教,姑且作為拋磚引玉了。

      【高等代數(shù)學(xué)習(xí)心得】相關(guān)文章:

      高等代數(shù)試題及答案04-02

      高等代數(shù) (丘維聲著)課后答案04-17

      高等代數(shù)與解析幾何期末知識(shí)點(diǎn)復(fù)習(xí)指導(dǎo)04-02

      高等代數(shù)(王萼芳石生明著)課后習(xí)題答案下載04-01

      高等教育法規(guī)學(xué)習(xí)心得11-21

      高等代數(shù)習(xí)題解 修訂版 下冊(cè) 課后答案 楊子胥 山東科學(xué)技術(shù)出版社04-10

      線性代數(shù)課后答案08-28

      近世代數(shù)試題及答案04-02

      線性代數(shù)考研復(fù)習(xí)要點(diǎn)05-07