- 相關(guān)推薦
高考數(shù)學(xué)有效的解題技巧方法
高考數(shù)學(xué)有效的解題技巧方法1
1、函數(shù)與方程思想
函數(shù)思想是指使用運(yùn)動(dòng)變化的觀點(diǎn),分析和研究數(shù)學(xué)中的數(shù)量關(guān)系,通過建立函數(shù)關(guān)系使用函數(shù)的圖像和性質(zhì)去分析問題、轉(zhuǎn)化問題和解決問題;方程思想,是從問題的數(shù)量關(guān)系入手,使用數(shù)學(xué)語言將問題轉(zhuǎn)化為方程或不等式模型去解決問題。同學(xué)們?cè)诮忸}時(shí)可利用轉(zhuǎn)化思想實(shí)行函數(shù)與方程間的相互轉(zhuǎn)化。
2、數(shù)形結(jié)合思想
中學(xué)數(shù)學(xué)研究的對(duì)象可分為兩絕大部分,一部分是數(shù),一部分是形,但數(shù)與形是有聯(lián)系的,這個(gè)聯(lián)系稱之為數(shù)形結(jié)合或形數(shù)結(jié)合。它既是尋找問題解決切入點(diǎn)的“法寶”,又是優(yōu)化解題途徑的“良方",所以建議同學(xué)們?cè)诮獯饠?shù)學(xué)題時(shí),能畫圖的盡量畫出圖形,以利于準(zhǔn)確地理解題意、快速地解決問題。
3、特殊與一般的思想
用這種思想解選擇題有時(shí)特別有效,這是因?yàn)橐粋(gè)命題在普遍意義上成立時(shí),在其特殊情況下也必然成立,根據(jù)這個(gè)點(diǎn),同學(xué)們能夠直接確定選擇題中的準(zhǔn)確選項(xiàng)。不但如此,用這種思想方法去探求主觀題的求解策略,也同樣有用。
4、極限思想解題步驟
極限思想解決問題的一般步驟為:一、對(duì)于所求的未知量,先設(shè)法構(gòu)思一個(gè)與它相關(guān)的變量;二、確認(rèn)這變量通過無限過程的結(jié)果就是所求的未知量;三、構(gòu)造函數(shù)(數(shù)列)并利用極限計(jì)算法則得出結(jié)果或利用圖形的極限位置直接計(jì)算結(jié)果。
5、分類討論思想
同學(xué)們?cè)诮忸}時(shí)常常會(huì)遇到這樣一種情況,解到某一步之后,不能再以統(tǒng)一的方法、統(tǒng)一的式子繼續(xù)實(shí)行下去,這是因?yàn)楸谎芯康膶?duì)象包含了多種情況,這就需要對(duì)各種情況加以分類,并逐類求解,然后綜合歸納得解,這就是分類討論。
二、熟悉?即痤}套路
1、函數(shù)或方程或不等式的題目,先直接思考后建立三者的聯(lián)系。首先考慮定義域,其次使用“三合一定理”。
2、如果在方程或是不等式中出現(xiàn)超越式,優(yōu)先選擇數(shù)形結(jié)合的思想方法。
3、面對(duì)含有參數(shù)的初等函數(shù)來說,在研究的`時(shí)候應(yīng)該抓住參數(shù)沒有影響到的不變的性質(zhì)。如所過的定點(diǎn),二次函數(shù)的對(duì)稱軸或是.....
4、選擇與填空中出現(xiàn)不等式的題目,優(yōu)選特殊值法。
5、求參數(shù)的取值范圍,應(yīng)該建立關(guān)于參數(shù)的等式或是不等式,用函數(shù)的定義域或是值域或是解不等式完成,在對(duì)式子變形的過程中,優(yōu)先選擇分離參數(shù)的方法。
6、恒成立問題或是它的反面,能夠轉(zhuǎn)化為最值問題,注意二次函數(shù)的應(yīng)用,靈活使用閉區(qū)間上的最值,分類討論的思想,分類討論應(yīng)該不重復(fù)不遺漏。
7、圓錐曲線的題目優(yōu)先選擇它們的定義完成,直線與圓維曲線相交問題,若與弦的中點(diǎn)相關(guān),選擇設(shè)而不求點(diǎn)差法,與弦的中點(diǎn)無關(guān),選擇韋達(dá)定理公式法;使用韋達(dá)定理必須先考慮是否為二次及根的判別式。
8、求曲線方程的題目,如果知道曲線的形狀,則可選擇待定系數(shù)法,如果不知道曲線的形狀,則所用的步驟為建系、設(shè)點(diǎn)、列式、化簡(注意去掉不符合條件的特殊點(diǎn))。
9、求橢圓或是雙曲線的離心率,建立關(guān)于a、b、c之間的關(guān)系等式即可。
10、三角函數(shù)求周期、單調(diào)區(qū)間或是最值,優(yōu)先考慮化為一次同角弦函數(shù),然后使用輔助角公式解答;解三角形的題目,重視內(nèi)角和定理的使用;與向量聯(lián)系的題目,注意向量角的范圍。
11、數(shù)列的題目與和相關(guān),優(yōu)選和通公式,優(yōu)選作差的方法;注意歸納、猜想之后證明;猜想的方向是兩種特殊數(shù)列;解答的時(shí)候注意使用通項(xiàng)公式及前n項(xiàng)和公式,體會(huì)方程的思想。
12、立體幾何第一問如果是為建系服務(wù)的,一定用傳統(tǒng)做法完成,如果不是,能夠從第一問開始就建系完成;注意向量角與線線角、線面角、面面角都不相同。
13、導(dǎo)數(shù)的題目常規(guī)的一般不難,但要注意解題的層次與步驟,如果要用構(gòu)造函數(shù)證明不等式,可從已知或是前間中找到突破口,必要時(shí)應(yīng)該放棄;重視幾何意義的應(yīng)用,注意點(diǎn)是否在曲線上。
14、概率的題目如果出解答題,應(yīng)該先設(shè)事件,然后寫出使用公式的理由,當(dāng)然要注意步驟的多少?zèng)Q定解答的詳略;如果有分布列,則概率和為1是檢驗(yàn)準(zhǔn)確與否的重要途徑。
15、遇到復(fù)雜的式子能夠用換元法,使用換元法必須注意新元的取值范圍,有勾股定理型的已知,可使用三角換元來完成。
16、注意概率分布中的二項(xiàng)分布,二項(xiàng)式定理中的通項(xiàng)公式的使用與賦值的方法,排列組合中的枚舉法,全稱與特稱命題的否定寫法,取值范或是不等式的解的端點(diǎn)能否取到需單獨(dú)驗(yàn)證,用點(diǎn)斜式或斜截式方程的時(shí)候考慮斜率是否存有等。
17、絕對(duì)值問題優(yōu)先選擇去絕對(duì)值,去絕對(duì)值優(yōu)先選擇使用定義。
18、與平移相關(guān)的,注意口訣“左加右減,上加下減”只用于函數(shù),沿向量平移-定要使用平移公式完成。
19、關(guān)于中心對(duì)稱問題,只需使用中點(diǎn)坐標(biāo)公式就能夠,關(guān)于軸對(duì)稱問題,注意兩個(gè)等式的使用:一是垂直,一是中點(diǎn)在對(duì)稱軸上。
高考數(shù)學(xué)有效的解題技巧方法2
1.三角變換與三角函數(shù)的性質(zhì)問題
解題方法:①不同角化同角;②降冪擴(kuò)角;③化f(x)=Asin(ωx+φ)+h ;④結(jié)合性質(zhì)求解。
答題步驟:
、倩啠喝呛瘮(shù)式的化簡,一般化成y=Asin(ωx+φ)+h的形式,即化為“一角、一次、一函數(shù)”的形式。
、谡w代換:將ωx+φ看作一個(gè)整體,利用y=sin x,y=cos x的性質(zhì)確定條件。
、矍蠼猓豪忙豿+φ的范圍求條件解得函數(shù)y=Asin(ωx+φ)+h的性質(zhì),寫出結(jié)果。
2.解三角形問題
解題方法:
(1) ①化簡變形;②用余弦定理轉(zhuǎn)化為邊的關(guān)系;③變形證明。
(2) ①用余弦定理表示角;②用基本不等式求范圍;③確定角的取值范圍。
答題步驟:
、俣l件:即確定三角形中的已知和所求,在圖形中標(biāo)注出來,然后確定轉(zhuǎn)化的方向。
、诙üぞ撸杭锤鶕(jù)條件和所求,合理選擇轉(zhuǎn)化的工具,實(shí)施邊角之間的互化。
、矍蠼Y(jié)果。
3.數(shù)列的通項(xiàng)、求和問題
解題方法:①先求某一項(xiàng),或者找到數(shù)列的關(guān)系式;②求通項(xiàng)公式;③求數(shù)列和通式。
答題步驟:
、僬疫f推:根據(jù)已知條件確定數(shù)列相鄰兩項(xiàng)之間的關(guān)系,即找數(shù)列的遞推公式。
、谇笸(xiàng):根據(jù)數(shù)列遞推公式轉(zhuǎn)化為等差或等比數(shù)列求通項(xiàng)公式,或利用累加法或累乘法求通項(xiàng)公式。
③定方法:根據(jù)數(shù)列表達(dá)式的結(jié)構(gòu)特征確定求和方法(如公式法、裂項(xiàng)相消法、錯(cuò)位相減法、分組法等)。
、軐懖襟E:規(guī)范寫出求和步驟。
4.離散型隨機(jī)變量的均值與方差
解題思路:
(1)①標(biāo)記事件;②對(duì)事件分解;③計(jì)算概率。
(2)①確定ξ取值;②計(jì)算概率;③得分布列;④求數(shù)學(xué)期望。
答題步驟:
、俣ㄔ焊鶕(jù)已知條件確定離散型隨機(jī)變量的.取值。
②定性:明確每個(gè)隨機(jī)變量取值所對(duì)應(yīng)的事件。
、鄱ㄐ停捍_定事件的概率模型和計(jì)算公式。
④計(jì)算:計(jì)算隨機(jī)變量取每一個(gè)值的概率。
⑤列表:列出分布列。
、耷蠼猓焊鶕(jù)均值、方差公式求解其值。
5.圓錐曲線中的范圍問題
解題思路;①設(shè)方程;②解系數(shù);③得結(jié)論。
答題步驟:
、偬彡P(guān)系:從題設(shè)條件中提取不等關(guān)系式。
、谡液瘮(shù):用一個(gè)變量表示目標(biāo)變量,代入不等關(guān)系式。
、鄣梅秶和ㄟ^求解含目標(biāo)變量的不等式,得所求參數(shù)的范圍。
6.解析幾何中的探索性問題
解題思路:①一般先假設(shè)這種情況成立(點(diǎn)存在、直線存在、位置關(guān)系存在等);②將上面的假設(shè)代入已知條件求解;③得出結(jié)論。
答題步驟:
、傧燃俣ǎ杭僭O(shè)結(jié)論成立。
、谠偻评恚阂约僭O(shè)結(jié)論成立為條件,進(jìn)行推理求解。
③下結(jié)論:若推出合理結(jié)果,經(jīng)驗(yàn)證成立則肯。定假設(shè);若推出矛盾則否定假設(shè)。
高考數(shù)學(xué)有效的解題技巧方法3
一、三角函數(shù)題
注意歸一公式、誘導(dǎo)公式的正確性(轉(zhuǎn)化成同名同角三角函數(shù)時(shí),套用歸一公式、誘導(dǎo)公式(奇變、偶不變;符號(hào)看象限)時(shí),很容易因?yàn)榇中,?dǎo)致錯(cuò)誤!一著不慎,滿盤皆輸!)。
二、數(shù)列題
1、證明一個(gè)數(shù)列是等差(等比)數(shù)列時(shí),最后下結(jié)論時(shí)要寫上以誰為首項(xiàng),誰為公差(公比)的等差(等比)數(shù)列;
2、最后一問證明不等式成立時(shí),如果一端是常數(shù),另一端是含有n的式子時(shí),一般考慮用放縮法;如果兩端都是含n的式子,一般考慮數(shù)學(xué)歸納法(用數(shù)學(xué)歸納法時(shí),當(dāng)n=k+1時(shí),一定利用上n=k時(shí)的假設(shè),否則不正確。利用上假設(shè)后,如何把當(dāng)前的式子轉(zhuǎn)化到目標(biāo)式子,一般進(jìn)行適當(dāng)?shù)姆趴s,這一點(diǎn)是有難度的。簡潔的方法是,用當(dāng)前的式子減去目標(biāo)式子,看符號(hào),得到目標(biāo)式子,下結(jié)論時(shí)一定寫上綜上:由①②得證;
3、證明不等式時(shí),有時(shí)構(gòu)造函數(shù),利用函數(shù)單調(diào)性很簡單(所以要有構(gòu)造函數(shù)的意識(shí))。
三、立體幾何題
1、證明線面位置關(guān)系,一般不需要去建系,更簡單;
2、求異面直線所成的角、線面角、二面角、存在性問題、幾何體的高、表面積、體積等問題時(shí),最好要建系;
3、注意向量所成的角的余弦值(范圍)與所求角的余弦值(范圍)的關(guān)系(符號(hào)問題、鈍角、銳角問題)。
四、概率問題
1、搞清隨機(jī)試驗(yàn)包含的所有基本事件和所求事件包含的基本事件的個(gè)數(shù);
2、搞清是什么概率模型,套用哪個(gè)公式;
3、記準(zhǔn)均值、方差、標(biāo)準(zhǔn)差公式;
4、求概率時(shí),正難則反(根據(jù)p1+p2+...+pn=1);
5、注意計(jì)數(shù)時(shí)利用列舉、樹圖等基本方法;
6、注意放回抽樣,不放回抽樣;
7、注意“零散的”的知識(shí)點(diǎn)(莖葉圖,頻率分布直方圖、分層抽樣等)在大題中的滲透;
8、注意條件概率公式;
9、注意平均分組、不完全平均分組問題。
五、圓錐曲線問題
1、注意求軌跡方程時(shí),從三種曲線(橢圓、雙曲線、拋物線)著想,橢圓考得最多,方法上有直接法、定義法、交軌法、參數(shù)法、待定系數(shù)法;
2、注意直線的設(shè)法(法1分有斜率,沒斜率;法2設(shè)x=my+b(斜率不為零時(shí)),知道弦中點(diǎn)時(shí),往往用點(diǎn)差法);注意判別式;注意韋達(dá)定理;注意弦長公式;注意自變量的取值范圍等等;
3、戰(zhàn)術(shù)上整體思路要保7分,爭9分,想12分。
六、導(dǎo)數(shù)、極值、最值、不等式恒成立(或逆用求參)問題
1、先求函數(shù)的定義域,正確求出導(dǎo)數(shù),特別是復(fù)合函數(shù)的導(dǎo)數(shù),單調(diào)區(qū)間一般不能并,用“和”或“,”隔開(知函數(shù)求單調(diào)區(qū)間,不帶等號(hào);知單調(diào)性,求參數(shù)范圍,帶等號(hào));
2、注意最后一問有應(yīng)用前面結(jié)論的意識(shí);
3、注意分論討論的思想;
4、不等式問題有構(gòu)造函數(shù)的意識(shí);
5、恒成立問題(分離常數(shù)法、利用函數(shù)圖像與根的分布法、求函數(shù)最值法);
6、整體思路上保6分,爭10分,想14分。
五種數(shù)學(xué)答題思路
在高考時(shí)很多同學(xué)往往因?yàn)闀r(shí)間不夠?qū)е聰?shù)學(xué)試卷不能寫完,試卷得分不高,掌握解題思想可以幫助同學(xué)們快速找到解題思路,節(jié)約思考時(shí)間。以下總結(jié)高考數(shù)學(xué)五大解題思想,幫助同學(xué)們更好地提分
一、函數(shù)與方程思想
函數(shù)思想是指運(yùn)用運(yùn)動(dòng)變化的觀點(diǎn),分析和研究數(shù)學(xué)中的數(shù)量關(guān)系,通過建立函數(shù)關(guān)系運(yùn)用函數(shù)的.圖像和性質(zhì)去分析問題、轉(zhuǎn)化問題和解決問題;方程思想,是從問題的數(shù)量關(guān)系入手,運(yùn)用數(shù)學(xué)語言將問題轉(zhuǎn)化為方程或不等式模型去解決問題。同學(xué)們?cè)诮忸}時(shí)可利用轉(zhuǎn)化思想進(jìn)行函數(shù)與方程間的相互轉(zhuǎn)化。
二、數(shù)形結(jié)合思想
中學(xué)數(shù)學(xué)研究的對(duì)象可分為兩大部分,一部分是數(shù),一部分是形,但數(shù)與形是有聯(lián)系的,這個(gè)聯(lián)系稱之為數(shù)形結(jié)合或形數(shù)結(jié)合。它既是尋找問題解決切入點(diǎn)的“法寶”,又是優(yōu)化解題途徑的“良方”,因此建議同學(xué)們?cè)诮獯饠?shù)學(xué)題時(shí),能畫圖的盡量畫出圖形,以利于正確地理解題意、快速地解決問題。
三、特殊與一般的思想
用這種思想解選擇題有時(shí)特別有效,這是因?yàn)橐粋(gè)命題在普遍意義上成立時(shí),在其特殊情況下也必然成立,根據(jù)這一點(diǎn),同學(xué)們可以直接確定選擇題中的正確選項(xiàng)。不僅如此,用這種思想方法去探求主觀題的求解策略,也同樣有用
四、極限思想解題步驟
極限思想解決問題的一般步驟為:一、對(duì)于所求的未知量,先設(shè)法構(gòu)思一個(gè)與它有關(guān)的變量;二、確認(rèn)這變量通過無限過程的結(jié)果就是所求的未知量;三、構(gòu)造函數(shù)(數(shù)列)并利用極限計(jì)算法則得出結(jié)果或利用圖形的極限位置直接計(jì)算結(jié)果
五、分類討論思想
同學(xué)們?cè)诮忸}時(shí)常常會(huì)遇到這樣一種情況,解到某一步之后,不能再以統(tǒng)一的方法、統(tǒng)一的式子繼續(xù)進(jìn)行下去,這是因?yàn)楸谎芯康膶?duì)象包含了多種情況,這就需要對(duì)各種情況加以分類,并逐類求解,然后綜合歸納得解,這就是分類討論。引起分類討論的原因很多,數(shù)學(xué)概念本身具有多種情形,數(shù)學(xué)運(yùn)算法則、某些定理、公式的限制,圖形位置的不確定性,變化等均可能引起分類討論。建議同學(xué)們?cè)诜诸愑懻摻忸}時(shí),要做到標(biāo)準(zhǔn)統(tǒng)一,不重不漏。
【高考數(shù)學(xué)有效的解題技巧方法】相關(guān)文章:
高考數(shù)學(xué)的解題技巧12-08
高考數(shù)學(xué)有哪些精準(zhǔn)有效的復(fù)習(xí)方法12-09
有效的高考復(fù)習(xí)方法12-09
高考數(shù)學(xué)導(dǎo)數(shù)解題技巧04-03
高考英語有效復(fù)習(xí)方法12-07
高考語文的有效學(xué)習(xí)方法12-09