數(shù)學(xué)高考知識(shí)點(diǎn)總結(jié)(15篇)
總結(jié)就是把一個(gè)時(shí)段的學(xué)習(xí)、工作或其完成情況進(jìn)行一次全面系統(tǒng)的總結(jié),它可以有效鍛煉我們的語言組織能力,快快來寫一份總結(jié)吧。但是總結(jié)有什么要求呢?下面是小編幫大家整理的數(shù)學(xué)高考知識(shí)點(diǎn)總結(jié),希望能夠幫助到大家。
數(shù)學(xué)高考知識(shí)點(diǎn)總結(jié)1
表達(dá)式:(a+b)(a-b)=a^2-b^2,兩個(gè)數(shù)的和與這兩個(gè)數(shù)差的積,等于這兩個(gè)數(shù)的平方差,這個(gè)公式就叫做乘法的平方差公式
公式運(yùn)用
可用于某些分母含有根號(hào)的`分式:
1/(3-4倍根號(hào)2)化簡(jiǎn):
1×(3+4倍根號(hào)2)/(3-4倍根號(hào)2)^2;=(3+4倍根號(hào)2)/(9-32)=(3+4倍根號(hào)2)/-23
[解方程]
x^2-y^2=1991
[思路分析]
利用平方差公式求解
[解題過程]
x^2-y^2=1991
。▁+y)(x-y)=1991
因?yàn)?991可以分成1×1991,11×181
所以如果x+y=1991,x-y=1,解得x=996,y=995
如果x+y=181,x-y=11,x=96,y=85同時(shí)也可以是負(fù)數(shù)
所以解有x=996,y=995,或x=996,y=-995,或x=-996,y=995或x=-996,y=-995
或x=96,y=85,或x=96,y=-85或x=-96,y=85或x=-96,y=-85
有時(shí)應(yīng)注意加減的過程。
數(shù)學(xué)高考知識(shí)點(diǎn)總結(jié)2
第一部分集合
。1)含n個(gè)元素的集合的子集數(shù)為2^n,真子集數(shù)為2^n—1;非空真子集的數(shù)為2^n—2;
。2)注意:討論的時(shí)候不要遺忘了的情況。
第二部分函數(shù)與導(dǎo)數(shù)
1、映射:注意
①第一個(gè)集合中的元素必須有象;
②一對(duì)一,或多對(duì)一。
2、函數(shù)值域的求法:
①分析法;
②配方法;
、叟袆e式法;
、芾煤瘮(shù)單調(diào)性;
⑤換元法;
、蘩镁挡坏仁;
⑦利用數(shù)形結(jié)合或幾何意義(斜率、距離、絕對(duì)值的意義等);
、嗬煤瘮(shù)有界性;
、釋(dǎo)數(shù)法
3、復(fù)合函數(shù)的有關(guān)問題
(1)復(fù)合函數(shù)定義域求法:
、偃鬴(x)的定義域?yàn)椤瞐,b〕,則復(fù)合函數(shù)f[g(x)]的定義域由不等式a≤g(x)≤b解出。
、谌鬴[g(x)]的定義域?yàn)閇a,b],求f(x)的定義域,相當(dāng)于x∈[a,b]時(shí),求g(x)的值域。
。2)復(fù)合函數(shù)單調(diào)性的判定:
、偈紫葘⒃瘮(shù)分解為基本函數(shù):內(nèi)函數(shù)與外函數(shù);
、诜謩e研究?jī)?nèi)、外函數(shù)在各自定義域內(nèi)的單調(diào)性;
③根據(jù)“同性則增,異性則減”來判斷原函數(shù)在其定義域內(nèi)的單調(diào)性。
注意:外函數(shù)的'定義域是內(nèi)函數(shù)的值域。
4、分段函數(shù):值域(最值)、單調(diào)性、圖象等問題,先分段解決,再下結(jié)論。
5、函數(shù)的奇偶性
。1)函數(shù)的定義域關(guān)于原點(diǎn)對(duì)稱是函數(shù)具有奇偶性的必要條件;
。2)是奇函數(shù);
。3)是偶函數(shù);
。4)奇函數(shù)在原點(diǎn)有定義,則;
。5)在關(guān)于原點(diǎn)對(duì)稱的單調(diào)區(qū)間內(nèi):奇函數(shù)有相同的單調(diào)性,偶函數(shù)有相反的單調(diào)性;
。6)若所給函數(shù)的解析式較為復(fù)雜,應(yīng)先等價(jià)變形,再判斷其奇偶性;
數(shù)學(xué)高考知識(shí)點(diǎn)總結(jié)3
圓與圓的位置關(guān)系的判斷方法
一、設(shè)兩個(gè)圓的半徑為R和r,圓心距為d。
則有以下五種關(guān)系:
1、d>R+r兩圓外離;兩圓的圓心距離之和大于兩圓的半徑之和。
2、d=R+r兩圓外切;兩圓的圓心距離之和等于兩圓的半徑之和。
3、d=R—r兩圓內(nèi)切;兩圓的圓心距離之和等于兩圓的半徑之差。
4、d 5、d 二、圓和圓的位置關(guān)系,還可用有無公共點(diǎn)來判斷: 1、無公共點(diǎn),一圓在另一圓之外叫外離,在之內(nèi)叫內(nèi)含。 2、有唯一公共點(diǎn)的,一圓在另一圓之外叫外切,在之內(nèi)叫內(nèi)切。 3、有兩個(gè)公共點(diǎn)的叫相交。兩圓圓心之間的距離叫做圓心距。 三角函數(shù)。 注意歸一公式、誘導(dǎo)公式的正確性。 數(shù)列題。 1、證明一個(gè)數(shù)列是等差(等比)數(shù)列時(shí),最后下結(jié)論時(shí)要寫上以誰為首項(xiàng),誰為公差(公比)的等差(等比)數(shù)列; 2、最后一問證明不等式成立時(shí),如果一端是常數(shù),另一端是含有n的式子時(shí),一般考慮用放縮法;如果兩端都是含n的式子,一般考慮數(shù)學(xué)歸納法(用數(shù)學(xué)歸納法時(shí),當(dāng)n=k+1時(shí),一定利用上n=k時(shí)的假設(shè),否則不正確。利用上假設(shè)后,如何把當(dāng)前的式子轉(zhuǎn)化到目標(biāo)式子,一般進(jìn)行適當(dāng)?shù)姆趴s,這一點(diǎn)是有難度的。簡(jiǎn)潔的方法是,用當(dāng)前的式子減去目標(biāo)式子,看符號(hào),得到目標(biāo)式子,下結(jié)論時(shí)一定寫上綜上:由①②得證; 3、證明不等式時(shí),有時(shí)構(gòu)造函數(shù),利用函數(shù)單調(diào)性很簡(jiǎn)單 立體幾何題。 1、證明線面位置關(guān)系,一般不需要去建系,更簡(jiǎn)單; 2、求異面直線所成的'角、線面角、二面角、存在性問題、幾何體的高、表面積、體積等問題時(shí),要建系; 3、注意向量所成的角的余弦值(范圍)與所求角的余弦值(范圍)的關(guān)系。 概率問題。 1、搞清隨機(jī)試驗(yàn)包含的所有基本事件和所求事件包含的基本事件的個(gè)數(shù); 2、搞清是什么概率模型,套用哪個(gè)公式; 3、記準(zhǔn)均值、方差、標(biāo)準(zhǔn)差公式; 4、求概率時(shí),正難則反(根據(jù)p1+p2+……+pn=1); 5、注意計(jì)數(shù)時(shí)利用列舉、樹圖等基本方法; 6、注意放回抽樣,不放回抽樣; 正弦、余弦典型例題。 1、在△ABC中,∠C=90°,a=1,c=4,則sinA的值為 2、已知α為銳角,且,則α的度數(shù)是()A、30°B、45°C、60°D、90° 3、在△ABC中,若,∠A,∠B為銳角,則∠C的度數(shù)是()A、75°B、90°C、105°D、120° 4、若∠A為銳角,且,則A=()A、15°B、30°C、45°D、60° 5、在△ABC中,AB=AC=2,AD⊥BC,垂足為D,且AD=,E是AC中點(diǎn),EF⊥BC,垂足為F,求sin∠EBF的值。 正弦、余弦解題訣竅。 1、已知兩角及一邊,或兩邊及一邊的對(duì)角(對(duì)三角形是否存在要討論)用正弦定理。 2、已知三邊,或兩邊及其夾角用余弦定理 3、余弦定理對(duì)于確定三角形形狀非常有用,只需要知道角的余弦值為正,為負(fù),還是為零,就可以確定是鈍角。直角還是銳角。 1、課程內(nèi)容: 必修課程由5個(gè)模塊組成: 必修1:集合、函數(shù)概念與基本初等函數(shù)(指、對(duì)、冪函數(shù)) 必修2:立體幾何初步、平面解析幾何初步。 必修3:算法初步、統(tǒng)計(jì)、概率。 必修4:基本初等函數(shù)(三角函數(shù))、平面向量、三角恒等變換。 必修5:解三角形、數(shù)列、不等式。 以上是每一個(gè)高中學(xué)生所必須學(xué)習(xí)的。 上述內(nèi)容覆蓋了高中階段傳統(tǒng)的數(shù)學(xué)基礎(chǔ)知識(shí)和基本技能的主要部分,其中包括集合、函數(shù)、數(shù)列、不等式、解三角形、立體幾何初步、平面解析幾何初步等。不同的是在保證打好基礎(chǔ)的同時(shí),進(jìn)一步強(qiáng)調(diào)了這些知識(shí)的發(fā)生、發(fā)展過程和實(shí)際應(yīng)用,而不在技巧與難度上做過高的要求。 此外,基礎(chǔ)內(nèi)容還增加了向量、算法、概率、統(tǒng)計(jì)等內(nèi)容。 2、重難點(diǎn)及考點(diǎn): 重點(diǎn):函數(shù),數(shù)列,三角函數(shù),平面向量,圓錐曲線,立體幾何,導(dǎo)數(shù) 難點(diǎn):函數(shù)、圓錐曲線 高考相關(guān)考點(diǎn): 、偶吓c簡(jiǎn)易邏輯:集合的概念與運(yùn)算、簡(jiǎn)易邏輯、充要條件 、坪瘮(shù):映射與函數(shù)、函數(shù)解析式與定義域、值域與最值、反函數(shù)、三大性質(zhì)、函數(shù)圖象、指數(shù)與指數(shù)函數(shù)、對(duì)數(shù)與對(duì)數(shù)函數(shù)、函數(shù)的應(yīng)用 ⑶數(shù)列:數(shù)列的有關(guān)概念、等差數(shù)列、等比數(shù)列、數(shù)列求和、數(shù)列的應(yīng)用 ⑷三角函數(shù):有關(guān)概念、同角關(guān)系與誘導(dǎo)公式、和、差、倍、半公式、求值、化簡(jiǎn)、證明、三角函數(shù)的圖象與性質(zhì)、三角函數(shù)的應(yīng)用 ⑸平面向量:有關(guān)概念與初等運(yùn)算、坐標(biāo)運(yùn)算、數(shù)量積及其應(yīng)用 ⑹不等式:概念與性質(zhì)、均值不等式、不等式的證明、不等式的解法、絕對(duì)值不等式、不等式的應(yīng)用 ⑺直線和圓的方程:直線的方程、兩直線的位置關(guān)系、線性規(guī)劃、圓、直線與圓的'位置關(guān)系 ⑻圓錐曲線方程:橢圓、雙曲線、拋物線、直線與圓錐曲線的位置關(guān)系、軌跡問題、圓錐曲線的應(yīng)用 、椭本、平面、簡(jiǎn)單幾何體:空間直線、直線與平面、平面與平面、棱柱、棱錐、球、空間向量 、闻帕、組合和概率:排列、組合應(yīng)用題、二項(xiàng)式定理及其應(yīng)用 ⑾概率與統(tǒng)計(jì):概率、分布列、期望、方差、抽樣、正態(tài)分布 ⑿導(dǎo)數(shù):導(dǎo)數(shù)的概念、求導(dǎo)、導(dǎo)數(shù)的應(yīng)用 ⒀復(fù)數(shù):復(fù)數(shù)的概念與運(yùn)算 一、集合與函數(shù) 1.進(jìn)行集合的交、并、補(bǔ)運(yùn)算時(shí),不要忘了全集和空集的特殊情況,不要忘記了借助數(shù)軸和文氏圖進(jìn)行求解。 2.在應(yīng)用條件時(shí),易A忽略是空集的情況 3.你會(huì)用補(bǔ)集的思想解決有關(guān)問題嗎? 4.簡(jiǎn)單命題與復(fù)合命題有什么區(qū)別?四種命題之間的相互關(guān)系是什么?如何判斷充分與必要條件? 5.你知道“否命題”與“命題的否定形式”的區(qū)別。 6.求解與函數(shù)有關(guān)的問題易忽略定義域優(yōu)先的原則。 7.判斷函數(shù)奇偶性時(shí),易忽略檢驗(yàn)函數(shù)定義域是否關(guān)于原點(diǎn)對(duì)稱。 8.求一個(gè)函數(shù)的解析式和一個(gè)函數(shù)的反函數(shù)時(shí),易忽略標(biāo)注該函數(shù)的定義域。 9.原函數(shù)在區(qū)間[-a,a]上單調(diào)遞增,則一定存在反函數(shù),且反函數(shù)也單調(diào)遞增;但一個(gè)函數(shù)存在反函數(shù),此函數(shù)不一定單調(diào)。例如:。 10.你熟練地掌握了函數(shù)單調(diào)性的證明方法嗎?定義法(取值, 作差, 判正負(fù))和導(dǎo)數(shù)法 11. 求函數(shù)單調(diào)性時(shí),易錯(cuò)誤地在多個(gè)單調(diào)區(qū)間之間添加符號(hào)“∪”和“或”;單調(diào)區(qū)間不能用集合或不等式表示。 12.求函數(shù)的值域必須先求函數(shù)的定義域。 13.如何應(yīng)用函數(shù)的單調(diào)性與奇偶性解題?①比較函數(shù)值的大小;②解抽象函數(shù)不等式;③求參數(shù)的范圍(恒成立問題).這幾種基本應(yīng)用你掌握了嗎? 14.解對(duì)數(shù)函數(shù)問題時(shí),你注意到真數(shù)與底數(shù)的限制條件了嗎? (真數(shù)大于零,底數(shù)大于零且不等于1)字母底數(shù)還需討論 15.三個(gè)二次(哪三個(gè)二次?)的關(guān)系及應(yīng)用掌握了嗎?如何利用二次函數(shù)求最值? 16.用換元法解題時(shí)易忽略換元前后的等價(jià)性,易忽略參數(shù)的范圍。 17.“實(shí)系數(shù)一元二次方程有實(shí)數(shù)解”轉(zhuǎn)化時(shí),你是否注意到:當(dāng)時(shí),“方程有解”不能轉(zhuǎn)化為。若原題中沒有指出是二次方程,二次函數(shù)或二次不等式,你是否考慮到二次項(xiàng)系數(shù)可能為的零的情形? 二、不等式 1.利用均值不等式求最值時(shí),你是否注意到:“一正;二定;三等”. 2.絕對(duì)值不等式的解法及其幾何意義是什么? 3.解分式不等式應(yīng)注意什么問題?用“根軸法”解整式(分式)不等式的注意事項(xiàng)是什么? 4.解含參數(shù)不等式的通法是“定義域?yàn)榍疤,函?shù)的單調(diào)性為基礎(chǔ),分類討論是關(guān)鍵”,注意解完之后要寫上:“綜上,原不等式的解集是……”. 5. 在求不等式的解集、定義域及值域時(shí),其結(jié)果一定要用集合或區(qū)間表示;不能用不等式表示。 6. 兩個(gè)不等式相乘時(shí),必須注意同向同正時(shí)才能相乘,即同向同正可乘;同時(shí)要注意“同號(hào)可倒”即a>b>0,a 三、數(shù)列 1.解決一些等比數(shù)列的前項(xiàng)和問題,你注意到要對(duì)公比及兩種情況進(jìn)行討論了嗎? 2.在“已知,求”的問題中,你在利用公式時(shí)注意到了嗎?(時(shí),應(yīng)有)需要驗(yàn)證,有些題目通項(xiàng)是分段函數(shù)。 3.你知道存在的條件嗎?(你理解數(shù)列、有窮數(shù)列、無窮數(shù)列的概念嗎?你知道無窮數(shù)列的前項(xiàng)和與所有項(xiàng)的和的不同嗎?什么樣的無窮等比數(shù)列的所有項(xiàng)的和必定存在? 4.數(shù)列單調(diào)性問題能否等同于對(duì)應(yīng)函數(shù)的單調(diào)性問題?(數(shù)列是特殊函數(shù),但其定義域中的值不是連續(xù)的。) 5.應(yīng)用數(shù)學(xué)歸納法一要注意步驟齊全,二要注意從到過程中,先假設(shè)時(shí)成立,再結(jié)合一些數(shù)學(xué)方法用來證明時(shí)也成立。 四、三角函數(shù) 1.正角、負(fù)角、零角、象限角的概念你清楚嗎,若角的終邊在坐標(biāo)軸上,那它歸哪個(gè)象限呢?你知道銳角與第一象限的角;終邊相同的角和相等的角的區(qū)別嗎? 2.三角函數(shù)的定義及單位圓內(nèi)的三角函數(shù)線(正弦線、余弦線、正切線)的定義你知道嗎? 3. 在解三角問題時(shí),你注意到正切函數(shù)、余切函數(shù)的定義域了嗎?你注意到正弦函數(shù)、余弦函數(shù)的有界性了嗎? 4. 你還記得三角化簡(jiǎn)的通性通法嗎?(切割化弦、降冪公式、用三角公式轉(zhuǎn)化出現(xiàn)特殊角。 異角化同角,異名化同名,高次化低次) 5. 反正弦、反余弦、反正切函數(shù)的取值范圍分別是 6.你還記得某些特殊角的三角函數(shù)值嗎? 7.掌握正弦函數(shù)、余弦函數(shù)及正切函數(shù)的圖象和性質(zhì)。你會(huì)寫三角函數(shù)的單調(diào)區(qū)間嗎?會(huì)寫簡(jiǎn)單的三角不等式的解集嗎?(要注意數(shù)形結(jié)合與書寫規(guī)范,可別忘了),你是否清楚函數(shù)的圖象可以由函數(shù)經(jīng)過怎樣的變換得到嗎? 五、平面向量 1..數(shù)0有區(qū)別,的模為數(shù)0,它不是沒有方向,而是方向不定?梢钥闯膳c任意向量平行,但與任意向量都不垂直。 2..數(shù)量積與兩個(gè)實(shí)數(shù)乘積的區(qū)別: 在實(shí)數(shù)中:若,且ab=0,則b=0,但在向量的數(shù)量積中,若,且,不能推出。 已知實(shí)數(shù),且,則a=c,但在向量的數(shù)量積中沒有。 在實(shí)數(shù)中有,但是在向量的數(shù)量積中,這是因?yàn)樽筮吺桥c共線的向量,而右邊是與共線的向量。 3.是向量與平行的充分而不必要條件,是向量和向量夾角為鈍角的必要而不充分條件。 六、解析幾何 1.在用點(diǎn)斜式、斜截式求直線的方程時(shí),你是否注意到不存在的情況? 2.用到角公式時(shí),易將直線l1、l2的斜率k1、k2的順序弄顛倒。 3.直線的傾斜角、到的角、與的夾角的取值范圍依次是。 4. 定比分點(diǎn)的坐標(biāo)公式是什么?(起點(diǎn),中點(diǎn),分點(diǎn)以及值可要搞清),在利用定比分點(diǎn)解題時(shí),你注意到了嗎? 5. 對(duì)不重合的兩條直線 (建議在解題時(shí),討論后利用斜率和截距) 6. 直線在兩坐標(biāo)軸上的截距相等,直線方程可以理解為,但不要忘記當(dāng)時(shí),直線在兩坐標(biāo)軸上的截距都是0,亦為截距相等。 7.解決線性規(guī)劃問題的.基本步驟是什么?請(qǐng)你注意解題格式和完整的文字表達(dá)。(①設(shè)出變量,寫出目標(biāo)函數(shù)②寫出線性約束條件③畫出可行域④作出目標(biāo)函數(shù)對(duì)應(yīng)的系列平行線,找到并求出最優(yōu)解⑦應(yīng)用題一定要有答。) 8.三種圓錐曲線的定義、圖形、標(biāo)準(zhǔn)方程、幾何性質(zhì),橢圓與雙曲線中的兩個(gè)特征三角形你掌握了嗎? 9.圓、和橢圓的參數(shù)方程是怎樣的?常用參數(shù)方程的方法解決哪一些問題? 10.利用圓錐曲線第二定義解題時(shí),你是否注意到定義中的定比前后項(xiàng)的順序?如何利用第二定義推出圓錐曲線的焦半徑公式?如何應(yīng)用焦半徑公式? 11. 通徑是拋物線的所有焦點(diǎn)弦中最短的弦。(想一想在雙曲線中的結(jié)論?) 12. 在用圓錐曲線與直線聯(lián)立求解時(shí),消元后得到的方程中要注意:二次項(xiàng)的系數(shù)是否為零?橢圓,雙曲線二次項(xiàng)系數(shù)為零時(shí)直線與其只有一個(gè)交點(diǎn),判別式的限制。(求交點(diǎn),弦長(zhǎng),中點(diǎn),斜率,對(duì)稱,存在性問題都在下進(jìn)行). 13.解析幾何問題的求解中,平面幾何知識(shí)利用了嗎?題目中是否已經(jīng)有坐標(biāo)系了,是否需要建立直角坐標(biāo)系? 七、立體幾何 1.你掌握了空間圖形在平面上的直觀畫法嗎?(斜二測(cè)畫法)。 2.線面平行和面面平行的定義、判定和性質(zhì)定理你掌握了嗎?線線平行、線面平行、面面平行這三者之間的聯(lián)系和轉(zhuǎn)化在解決立幾問題中的應(yīng)用是怎樣的?每種平行之間轉(zhuǎn)換的條件是什么? 3.三垂線定理及其逆定理你記住了嗎?你知道三垂線定理的關(guān)鍵是什么嗎?(一面、四線、三垂直、立柱即面的垂線是關(guān)鍵)一面四直線,立柱是關(guān)鍵,垂直三處見 4.線面平行的判定定理和性質(zhì)定理在應(yīng)用時(shí)都是三個(gè)條件,但這三個(gè)條件易混為一談;面面平行的判定定理易把條件錯(cuò)誤地記為”一個(gè)平面內(nèi)的兩條相交直線與另一個(gè)平面內(nèi)的兩條相交直線分別平行”而導(dǎo)致證明過程跨步太大。 5.求兩條異面直線所成的角、直線與平面所成的角和二面角時(shí),如果所求的角為90°,那么就不要忘了還有一種求角的方法即用證明它們垂直的方法。 6.異面直線所成角利用“平移法”求解時(shí),一定要注意平移后所得角等于所求角(或其補(bǔ)角),特別是題目告訴異面直線所成角,應(yīng)用時(shí)一定要從題意出發(fā),是用銳角還是其補(bǔ)角,還是兩種情況都有可能。 7.你知道公式:和中每一字母的意思嗎?能夠熟練地應(yīng)用它們解題嗎? 8. 兩條異面直線所成的角的范圍:0°<α≤90°< p=""> 直線與平面所成的角的范圍:0o≤α≤90° 1. 函數(shù)的奇偶性 。1)若f(x)是偶函數(shù),那么f(x)=f(-x) ; 。2)若f(x)是奇函數(shù),0在其定義域內(nèi),則 f(0)=0(可用于求參數(shù)); 。3)判斷函數(shù)奇偶性可用定義的等價(jià)形式:f(x)±f(-x)=0或 (f(x)≠0); (4)若所給函數(shù)的解析式較為復(fù)雜,應(yīng)先化簡(jiǎn),再判斷其奇偶性; 。5)奇函數(shù)在對(duì)稱的單調(diào)區(qū)間內(nèi)有相同的單調(diào)性;偶函數(shù)在對(duì)稱的單調(diào)區(qū)間內(nèi)有相反的單調(diào)性; 2. 復(fù)合函數(shù)的有關(guān)問題 。1)復(fù)合函數(shù)定義域求法:若已知 的定義域?yàn)閇a,b],其復(fù)合函數(shù)f[g(x)]的定義域由不等式a≤g(x)≤b解出即可;若已知f[g(x)]的定義域?yàn)閇a,b],求 f(x)的定義域,相當(dāng)于x∈[a,b]時(shí),求g(x)的值域(即 f(x)的定義域);研究函數(shù)的問題一定要注意定義域優(yōu)先的原則。 (2)復(fù)合函數(shù)的單調(diào)性由“同增異減”判定; 3.函數(shù)圖像(或方程曲線的對(duì)稱性) 。1)證明函數(shù)圖像的'對(duì)稱性,即證明圖像上任意點(diǎn)關(guān)于對(duì)稱中心(對(duì)稱軸)的對(duì)稱點(diǎn)仍在圖像上; (2)證明圖像C1與C2的對(duì)稱性,即證明C1上任意點(diǎn)關(guān)于對(duì)稱中心(對(duì)稱軸)的對(duì)稱點(diǎn)仍在C2上,反之亦然; (3)曲線C1:f(x,y)=0,關(guān)于y=x+a(y=-x+a)的對(duì)稱曲線C2的方程為f(y-a,x+a)=0(或f(-y+a,-x+a)=0); (4)曲線C1:f(x,y)=0關(guān)于點(diǎn)(a,b)的對(duì)稱曲線C2方程為:f(2a-x,2b-y)=0; 。5)若函數(shù)y=f(x)對(duì)x∈R時(shí),f(a+x)=f(a-x)恒成立,則y=f(x)圖像關(guān)于直線x=a對(duì)稱; 。6)函數(shù)y=f(x-a)與y=f(b-x)的圖像關(guān)于直線x= 對(duì)稱; 4.函數(shù)的周期性 (1)y=f(x)對(duì)x∈R時(shí),f(x +a)=f(x-a) 或f(x-2a )=f(x) (a>;0)恒成立,則y=f(x)是周期為2a的周期函數(shù); (2)若y=f(x)是偶函數(shù),其圖像又關(guān)于直線x=a對(duì)稱,則f(x)是周期為2︱a︱的周期函數(shù); 。3)若y=f(x)奇函數(shù),其圖像又關(guān)于直線x=a對(duì)稱,則f(x)是周期為4︱a︱的周期函數(shù); 。4)若y=f(x)關(guān)于點(diǎn)(a,0),(b,0)對(duì)稱,則f(x)是周期為2 的周期函數(shù); (5)y=f(x)的圖象關(guān)于直線x=a,x=b(a≠b)對(duì)稱,則函數(shù)y=f(x)是周期為2 的周期函數(shù); 。6)y=f(x)對(duì)x∈R時(shí),f(x+a)=-f(x)(或f(x+a)= ,則y=f(x)是周期為2 的周期函數(shù); 5.方程k=f(x)有解 k∈D(D為f(x)的值域); 6.a≥f(x) 恒成立 a≥[f(x)]max,; a≤f(x) 恒成立 a≤[f(x)]min; 7.(1) (a>;0,a≠1,b>;0,n∈R+); (2) l og a N= ( a>;0,a≠1,b>;0,b≠1); 。3) l og a b的符號(hào)由口訣“同正異負(fù)”記憶; (4) a log a N= N ( a>;0,a≠1,N>;0 ); 8. 判斷對(duì)應(yīng)是否為映射時(shí),抓住兩點(diǎn):(1)A中元素必須都有象且唯一;(2)B中元素不一定都有原象,并且A中不同元素在B中可以有相同的象; 9. 能熟練地用定義證明函數(shù)的單調(diào)性,求反函數(shù),判斷函數(shù)的奇偶性。 10.對(duì)于反函數(shù),應(yīng)掌握以下一些結(jié)論:(1)定義域上的單調(diào)函數(shù)必有反函數(shù);(2)奇函數(shù)的反函數(shù)也是奇函數(shù);(3)定義域?yàn)榉菃卧丶呐己瘮?shù)不存在反函數(shù);(4)周期函數(shù)不存在反函數(shù);(5)互為反函數(shù)的兩個(gè)函數(shù)具有相同的單調(diào)性;(5) y=f(x)與y=f-1(x)互為反函數(shù),設(shè)f(x)的定義域?yàn)锳,值域?yàn)锽,則有f[f--1(x)]=x(x∈B),f--1[f(x)]=x(x∈A)。 11.處理二次函數(shù)的問題勿忘數(shù)形結(jié)合;二次函數(shù)在閉區(qū)間上必有最值,求最值問題用“兩看法”:一看開口方向;二看對(duì)稱軸與所給區(qū)間的相對(duì)位置關(guān)系; 12. 依據(jù)單調(diào)性,利用一次函數(shù)在區(qū)間上的保號(hào)性可解決求一類參數(shù)的范圍問題 13. 恒成立問題的處理方法:(1)分離參數(shù)法;(2)轉(zhuǎn)化為一元二次方程的根的分布列不等式(組)求解; 求函數(shù)奇偶性的常見錯(cuò)誤 錯(cuò)因分析:求函數(shù)奇偶性的常見錯(cuò)誤有求錯(cuò)函數(shù)定義域或是忽視函數(shù)定義域,對(duì)函數(shù)具有奇偶性的前提條件不清,對(duì)分段函數(shù)奇偶性判斷方法不當(dāng)?shù)。判斷函?shù)的奇偶性,首先要考慮函數(shù)的定義域,一個(gè)函數(shù)具備奇偶性的必要條件是這個(gè)函數(shù)的定義域區(qū)間關(guān)于原點(diǎn)對(duì)稱,如果不具備這個(gè)條件,函數(shù)一定是非奇非偶的函數(shù)。在定義域區(qū)間關(guān)于原點(diǎn)對(duì)稱的前提下,再根據(jù)奇偶函數(shù)的定義進(jìn)行判斷,在用定義進(jìn)行判斷時(shí)要注意自變量在定義域區(qū)間內(nèi)的任意性。 抽象函數(shù)中推理不嚴(yán)密致誤 錯(cuò)因分析:很多抽象函數(shù)問題都是以抽象出某一類函數(shù)的共同“特征”而設(shè)計(jì)出來的,在解決問題時(shí),可以通過類比這類函數(shù)中一些具體函數(shù)的性質(zhì)去解決抽象函數(shù)的性質(zhì)。解答抽象函數(shù)問題要注意特殊賦值法的應(yīng)用,通過特殊賦值可以找到函數(shù)的不變性質(zhì),這個(gè)不變性質(zhì)往往是進(jìn)一步解決問題的突破口。抽象函數(shù)性質(zhì)的證明是一種代數(shù)推理,和幾何推理證明一樣,要注意推理的嚴(yán)謹(jǐn)性,每一步推理都要有充分的條件,不可漏掉一些條件,更不要臆造條件,推理過程要層次分明,書寫規(guī)范。 函數(shù)零點(diǎn)定理使用不當(dāng)致誤 錯(cuò)因分析:如果函數(shù)y=f(x)在區(qū)間[a,b]上的圖象是連續(xù)不斷的一條曲線,并且有f(a)f(b)<0,那么,函數(shù)y=f(x)在區(qū)間(a,b)內(nèi)有零點(diǎn),即存在c∈(a,b),使得f(c)=0,這個(gè)c也是方程f(c)=0的根,這個(gè)結(jié)論我們一般稱之為函數(shù)的零點(diǎn)定理。函數(shù)的零點(diǎn)有“變號(hào)零點(diǎn)”和“不變號(hào)零點(diǎn)”,對(duì)于“不變號(hào)零點(diǎn)”,函數(shù)的零點(diǎn)定理是“無能為力”的,在解決函數(shù)的零點(diǎn)時(shí)要注意這個(gè)問題。 混淆兩類切線致誤 錯(cuò)因分析:曲線上一點(diǎn)處的切線是指以該點(diǎn)為切點(diǎn)的曲線的切線,這樣的切線只有一條;曲線的過一個(gè)點(diǎn)的切線是指過這個(gè)點(diǎn)的曲線的所有切線,這個(gè)點(diǎn)如果在曲線上當(dāng)然包括曲線在該點(diǎn)處的切線,曲線的過一個(gè)點(diǎn)的切線可能不止一條。因此求解曲線的切線問題時(shí),首先要區(qū)分是什么類型的切線。 混淆導(dǎo)數(shù)與單調(diào)性的關(guān)系致誤 錯(cuò)因分析:對(duì)于一個(gè)函數(shù)在某個(gè)區(qū)間上是增函數(shù),如果認(rèn)為函數(shù)的導(dǎo)函數(shù)在此區(qū)間上恒大于0,就會(huì)出錯(cuò)。研究函數(shù)的單調(diào)性與其導(dǎo)函數(shù)的關(guān)系時(shí)一定要注意:一個(gè)函數(shù)的導(dǎo)函數(shù)在某個(gè)區(qū)間上單調(diào)遞增(減)的充要條件是這個(gè)函數(shù)的導(dǎo)函數(shù)在此區(qū)間上恒大(小)于等于0,且導(dǎo)函數(shù)在此區(qū)間的任意子區(qū)間上都不恒為零。 導(dǎo)數(shù)與極值關(guān)系不清致誤 錯(cuò)因分析:在使用導(dǎo)數(shù)求函數(shù)極值時(shí),很容易出現(xiàn)的錯(cuò)誤就是求出使導(dǎo)函數(shù)等于0的點(diǎn),而沒有對(duì)這些點(diǎn)左右兩側(cè)導(dǎo)函數(shù)的符號(hào)進(jìn)行判斷,誤以為使導(dǎo)函數(shù)等于0的點(diǎn)就是函數(shù)的極值點(diǎn)。出現(xiàn)這些錯(cuò)誤的原因是對(duì)導(dǎo)數(shù)與極值關(guān)系不清。可導(dǎo)函數(shù)在一個(gè)點(diǎn)處的導(dǎo)函數(shù)值為零只是這個(gè)函數(shù)在此點(diǎn)處取到極值的必要條件,在此提醒廣大考生在使用導(dǎo)數(shù)求函數(shù)極值時(shí)一定要注意對(duì)極值點(diǎn)進(jìn)行檢驗(yàn)。 用錯(cuò)基本公式致誤 錯(cuò)因分析:等差數(shù)列的首項(xiàng)為a1、公差為d,則其通項(xiàng)公式an=a1+(n-1)d,前n項(xiàng)和公式Sn=na1+n(n-1)d/2=(a1+an)d/2;等比數(shù)列的首項(xiàng)為a1、公比為q,則其通項(xiàng)公式an=a1pn-1,當(dāng)公比q≠1時(shí),前n項(xiàng)和公式Sn=a1(1-pn)/(1-q)=(a1-anq)/(1-q),當(dāng)公比q=1時(shí),前n項(xiàng)和公式Sn=na1。在數(shù)列的基礎(chǔ)性試題中,等差數(shù)列、等比數(shù)列的這幾個(gè)公式是解題的根本,用錯(cuò)了公式,解題就失去了方向。 an,Sn關(guān)系不清致誤 錯(cuò)因分析:在數(shù)列問題中,數(shù)列的通項(xiàng)an與其前n項(xiàng)和Sn之間存在關(guān)系:這個(gè)關(guān)系是對(duì)任意數(shù)列都成立的,但要注意的是這個(gè)關(guān)系式是分段的,在n=1和n≥2時(shí)這個(gè)關(guān)系式具有完全不同的表現(xiàn)形式,這也是解題中經(jīng)常出錯(cuò)的一個(gè)地方,在使用這個(gè)關(guān)系式時(shí)要牢牢記住其“分段”的特點(diǎn)。當(dāng)題目中給出了數(shù)列{an}的an與Sn之間的關(guān)系時(shí),這兩者之間可以進(jìn)行相互轉(zhuǎn)換,知道了an的具體表達(dá)式可以通過數(shù)列求和的方法求出Sn,知道了Sn可以求出an,解題時(shí)要注意體會(huì)這種轉(zhuǎn)換的相互性。 對(duì)等差、等比數(shù)列的性質(zhì)理解錯(cuò)誤 錯(cuò)因分析:等差數(shù)列的前n項(xiàng)和在公差不為0時(shí)是關(guān)于n的常數(shù)項(xiàng)為0的二次函數(shù)。一般地,有結(jié)論“若數(shù)列{an}的'前N項(xiàng)和Sn=an2+bn+c(a,b,c∈R),則數(shù)列{an}為等差數(shù)列的充要條件是c=0”;在等差數(shù)列中,Sm,S2m-Sm,S3m-S2m(m∈N*)是等差數(shù)列。解決這類題目的一個(gè)基本出發(fā)點(diǎn)就是考慮問題要全面,把各種可能性都考慮進(jìn)去,認(rèn)為正確的命題給以證明,認(rèn)為不正確的命題舉出反例予以駁斥。在等比數(shù)列中公比等于-1時(shí)是一個(gè)很特殊的情況,在解決有關(guān)問題時(shí)要注意這個(gè)特殊情況。 遺忘空集致誤 錯(cuò)因分析:由于空集是任何非空集合的真子集,因此,對(duì)于集合B高三經(jīng)典糾錯(cuò)筆記:數(shù)學(xué)A,就有B=A,φ≠B高三經(jīng)典糾錯(cuò)筆記:數(shù)學(xué)A,B≠φ,三種情況,在解題中如果思維不夠縝密就有可能忽視了 B≠φ這種情況,導(dǎo)致解題結(jié)果錯(cuò)誤。尤其是在解含有參數(shù)的集合問題時(shí),更要充分注意當(dāng)參數(shù)在某個(gè)范圍內(nèi)取值時(shí)所給的集合可能是空集這種情況。空集是一個(gè)特殊的集合,由于思維定式的原因,考生往往會(huì)在解題中遺忘了這個(gè)集合,導(dǎo)致解題錯(cuò)誤或是解題不全面。 忽視集合元素的三性致誤 錯(cuò)因分析:集合中的元素具有確定性、無序性、互異性,集合元素的三性中互異性對(duì)解題的影響最大,特別是帶有字母參數(shù)的集合,實(shí)際上就隱含著對(duì)字母參數(shù)的一些要求。在解題時(shí)也可以先確定字母參數(shù)的范圍后,再具體解決問題。 四種命題的結(jié)構(gòu)不明致誤 錯(cuò)因分析:如果原命題是“若 A則B”,則這個(gè)命題的逆命題是“若B則A”,否命題是“若┐A則┐B”,逆否命題是“若┐B則┐A”。這里面有兩組等價(jià)的命題,即“原命題和它的逆否命題等價(jià),否命題與逆命題等價(jià)”。在解答由一個(gè)命題寫出該命題的其他形式的命題時(shí),一定要明確四種命題的結(jié)構(gòu)以及它們之間的等價(jià)關(guān)系。另外,在否定一個(gè)命題時(shí),要注意全稱命題的否定是特稱命題,特稱命題的否定是全稱命題。如對(duì)“a,b都是偶數(shù)”的否定應(yīng)該是“a,b不都是偶數(shù)”,而不應(yīng)該是“a ,b都是奇數(shù)”。 充分必要條件顛倒致誤 錯(cuò)因分析:對(duì)于兩個(gè)條件A,B,如果A=>B成立,則A是B的充分條件,B是A的必要條件;如果B=>A成立,則A是B的必要條件,B是A的充分條件;如果A<=>B,則A,B互為充分必要條件。解題時(shí)最容易出錯(cuò)的就是顛倒了充分性與必要性,所以在解決這類問題時(shí)一定要根據(jù)充要條件的概念作出準(zhǔn)確的判斷。0時(shí),Δy/Δx-->常數(shù)A,就說函數(shù)y=f(x)在點(diǎn)x0處可導(dǎo),并把A叫做f(x)在點(diǎn)x0處的導(dǎo)數(shù)(瞬時(shí)變化率).記作f’(x0)的幾何意義是曲線y=f(x)在點(diǎn)(x0,f(x0))處的切線的斜率.瞬時(shí)速度就是位移函數(shù)s對(duì)時(shí)間t的導(dǎo)數(shù). 2)如果函數(shù)f(x)在開區(qū)間(a,b)內(nèi)每一點(diǎn)都可導(dǎo),其導(dǎo)數(shù)值在(a,b)內(nèi)構(gòu)成一個(gè)新的函數(shù),叫做f(x)在開區(qū)間(a,b)內(nèi)導(dǎo)數(shù),記作f’(x). 3)如果函數(shù)f(x)在點(diǎn)x0處可導(dǎo),那么函數(shù)y=f(x)在點(diǎn)x0處連續(xù). 2.函數(shù)的導(dǎo)數(shù)與導(dǎo)數(shù)值的區(qū)別與聯(lián)系:導(dǎo)數(shù)是原來函數(shù)的導(dǎo)函數(shù),而導(dǎo)數(shù)值是導(dǎo)函數(shù)在某一點(diǎn)的函數(shù)值,導(dǎo)數(shù)值是常數(shù). 3.求導(dǎo) 在高中數(shù)學(xué)導(dǎo)數(shù)求導(dǎo)過程中,要仔細(xì)分析函數(shù)解析式的結(jié)構(gòu)特征,緊扣求導(dǎo)法則,聯(lián)系基本函數(shù)求導(dǎo)公式,對(duì)于不具備求導(dǎo)法則結(jié)構(gòu)形式的要適當(dāng)恒等變形,對(duì)于比較復(fù)雜的函數(shù),如果直接套用求導(dǎo)法則,會(huì)使求導(dǎo)過程繁瑣冗長(zhǎng),且易出錯(cuò),此時(shí),可將解析式進(jìn)行合理變形,轉(zhuǎn)化為教易求導(dǎo)的結(jié)構(gòu)形 (1)先看“充分條件和必要條件” 當(dāng)命題“若p則q”為真時(shí),可表示為p=>q,則我們稱p為q的充分條件,q是p的必要條件。這里由p=>q,得出p為q的充分條件是容易理解的。 但為什么說q是p的必要條件呢? 事實(shí)上,與“p=>q”等價(jià)的逆否命題是“非q=>非p”。它的意思是:若q不成立,則p一定不成立。這就是說,q對(duì)于p是必不可少的,因而是必要的。 。2)再看“充要條件” 若有p=>q,同時(shí)q=>p,則p既是q的充分條件,又是必要條件。簡(jiǎn)稱為p是q的充要條件。記作p<=>q 。3)定義與充要條件 數(shù)學(xué)中,只有A是B的充要條件時(shí),才用A去定義B,因此每個(gè)定義中都包含一個(gè)充要條件。如“兩組對(duì)邊分別平行的四邊形叫做平行四邊形”這一定義就是說,一個(gè)四邊形為平行四邊形的充要條件是它的兩組對(duì)邊分別平行。 顯然,一個(gè)定理如果有逆定理,那么定理、逆定理合在一起,可以用一個(gè)含有充要條件的語句來表示。 “充要條件”有時(shí)還可以改用“當(dāng)且僅當(dāng)”來表示,其中“當(dāng)”表示“充分”。“僅當(dāng)”表示“必要”。 。4)一般地,定義中的條件都是充要條件,判定定理中的條件都是充分條件,性質(zhì)定理中的“結(jié)論”都可作為必要條件。 一、高考數(shù)學(xué)中有函數(shù)、數(shù)列、三角函數(shù)、平面向量、不等式、立體幾何等九大章節(jié) 主要是考函數(shù)和導(dǎo)數(shù),因?yàn)檫@是整個(gè)高中階段中最核心的部分,這部分里還重點(diǎn)考察兩個(gè)方面:第一個(gè)函數(shù)的性質(zhì),包括函數(shù)的單調(diào)性、奇偶性;第二是函數(shù)的解答題,重點(diǎn)考察的'是二次函數(shù)和高次函數(shù),分函數(shù)和它的一些分布問題,但是這個(gè)分布重點(diǎn)還包含兩個(gè)分析。 二、平面向量和三角函數(shù) 對(duì)于這部分知識(shí)重點(diǎn)考察三個(gè)方面:是劃減與求值,第一,重點(diǎn)掌握公式和五組基本公式;第二,掌握三角函數(shù)的圖像和性質(zhì),這里重點(diǎn)掌握正弦函數(shù)和余弦函數(shù)的性質(zhì);第三,正弦定理和余弦定理來解三角形,這方面難度并不大。 三、數(shù)列 數(shù)列這個(gè)板塊,重點(diǎn)考兩個(gè)方面:一個(gè)通項(xiàng);一個(gè)是求和。 四、空間向量和立體幾何 在里面重點(diǎn)考察兩個(gè)方面:一個(gè)是證明;一個(gè)是計(jì)算。 五、概率和統(tǒng)計(jì) 概率和統(tǒng)計(jì)主要屬于數(shù)學(xué)應(yīng)用問題的范疇,需要掌握幾個(gè)方面:……等可能的概率;……事件;獨(dú)立事件和獨(dú)立重復(fù)事件發(fā)生的概率。 六、解析幾何 這部分內(nèi)容說起來容易做起來難,需要掌握幾類問題,第一類直線和曲線的位置關(guān)系,要掌握它的通法;第二類動(dòng)點(diǎn)問題;第三類是弦長(zhǎng)問題;第四類是對(duì)稱問題;第五類重點(diǎn)問題,這類題往往覺得有思路卻沒有一個(gè)清晰的答案,但需要要掌握比較好的算法,來提高做題的準(zhǔn)確度。 七、壓軸題 同學(xué)們?cè)谧詈蟮膫淇紡?fù)習(xí)中,還應(yīng)該把重點(diǎn)放在不等式計(jì)算的方法中,難度雖然很大,但是也切忌在試卷中留空白,平時(shí)多做些壓軸題真題,爭(zhēng)取能解題就解題,能思考就思考。 1、數(shù)列的定義、分類與通項(xiàng)公式 (1)數(shù)列的定義: 、贁(shù)列:按照一定順序排列的一列數(shù)。 、跀(shù)列的項(xiàng):數(shù)列中的每一個(gè)數(shù)。 。2)數(shù)列的分類: 分類標(biāo)準(zhǔn)類型滿足條件 項(xiàng)數(shù)有窮數(shù)列項(xiàng)數(shù)有限 無窮數(shù)列項(xiàng)數(shù)無限 項(xiàng)與項(xiàng)間的大小關(guān)系遞增數(shù)列an+1>an其中n∈N 減數(shù)列an+1 常數(shù)列an+1=an 。3)數(shù)列的通項(xiàng)公式: 如果數(shù)列{an}的第n項(xiàng)與序號(hào)n之間的關(guān)系可以用一個(gè)式子來表示,那么這個(gè)公式叫做這個(gè)數(shù)列的通項(xiàng)公式。 2、數(shù)列的遞推公式 如果已知數(shù)列{an}的首項(xiàng)(或前幾項(xiàng)),且任一項(xiàng)an與它的前一項(xiàng)an—1(n≥2)(或前幾項(xiàng))間的關(guān)系可用一個(gè)公式來表示,那么這個(gè)公式叫數(shù)列的遞推公式。 3、對(duì)數(shù)列概念的理解 (1)數(shù)列是按一定“順序”排列的一列數(shù),一個(gè)數(shù)列不僅與構(gòu)成它的“數(shù)”有關(guān),而且還與這些“數(shù)”的排列順序有關(guān),這有別于集合中元素的無序性。因此,若組成兩個(gè)數(shù)列的數(shù)相同而排列次序不同,那么它們就是不同的兩個(gè)數(shù)列。 。2)數(shù)列中的數(shù)可以重復(fù)出現(xiàn),而集合中的'元素不能重復(fù)出現(xiàn),這也是數(shù)列與數(shù)集的區(qū)別。 4、數(shù)列的函數(shù)特征 數(shù)列是一個(gè)定義域?yàn)檎麛?shù)集N_或它的有限子集{1,2,3,…,n})的特殊函數(shù),數(shù)列的通項(xiàng)公式也就是相應(yīng)的函數(shù)解析式,即f(n)=an(n∈N_。 掌握每一個(gè)公式定理 做課本的例題,課本的例題的思路比較簡(jiǎn)單,其知識(shí)點(diǎn)也是單一不會(huì)交叉的,如果課本上的例題你拿出來都會(huì)做了,說明你已經(jīng)具備了一定的理解力。 做課后練習(xí)題,前面的題是和課本例題一個(gè)級(jí)別的,如果課本上所有的題都會(huì)做了,那么基礎(chǔ)夯實(shí)可以告一段落。 進(jìn)行專題訓(xùn)練提高數(shù)學(xué)成績(jī) 1、做高中數(shù)學(xué)題的時(shí)候千萬不能怕難題!有很多人數(shù)學(xué)分?jǐn)?shù)提不動(dòng),很大一部分原因是他們的畏懼心理。有的人看到圓錐曲線和導(dǎo)數(shù),看到稍微長(zhǎng)一點(diǎn)的復(fù)雜一點(diǎn)的敘述,甚至看到21、22就已經(jīng)開始退卻了。這部分的分?jǐn)?shù),如果你不去努力,永遠(yuǎn)都不會(huì)掙到的,所以第一個(gè)建議,就是大膽的去做。前面虧欠數(shù)學(xué)這門學(xué)科太多,就算讓它打腫了又怎樣,后面一點(diǎn)一點(diǎn)的強(qiáng)大起來,總有那么一天你去打它的臉。 2、錯(cuò)題本怎么用。和記筆記一樣,整理錯(cuò)題不是謄寫不是照抄,而是摘抄。你只顧著去采擷問題,就失去了理解和挑選題目的過程,筆記同理,如果老師說什么記什么,那只能說明你這節(jié)課根本沒聽,真正有效率的人,是會(huì)把知識(shí)簡(jiǎn)化,把書本讀薄的。先學(xué)學(xué)你能思考到答案的`哪一步,學(xué)著去偷分。當(dāng)然,因人而異,如果你覺得還有哪些題需要整理也可以記下來。 3、如何學(xué)好高中數(shù)學(xué) 1)先看筆記后做作業(yè)。有的高中學(xué)生感到。老師講過的,自己已經(jīng)聽得明明白白了。但是,為什么自己一做題就困難重重了呢?其原因在于,學(xué)生對(duì)教師所講的內(nèi)容的理解,還沒能達(dá)到教師所要求的層次。因此,每天在做作業(yè)之前,一定要把課本的有關(guān)內(nèi)容和當(dāng)天的課堂筆記先看一看。能否堅(jiān)持如此,常常是好學(xué)生與差學(xué)生的最大區(qū)別。尤其練習(xí)題不太配套時(shí),作業(yè)中往往沒有老師剛剛講過的題目類型,因此不能對(duì)比消化。如果自己又不注意對(duì)此落實(shí),天長(zhǎng)日久,就會(huì)造成極大損失。 2)做題之后加強(qiáng)反思。學(xué)生一定要明確,現(xiàn)在正坐著的題,一定不是考試的題目。而是要運(yùn)用現(xiàn)在正做著的題目的解題思路與方法。因此,要把自己做過的每道題加以反思?偨Y(jié)一下自己的收獲。要總結(jié)出,這是一道什么內(nèi)容的題,用的是什么方法。做到知識(shí)成片,問題成串,日久天長(zhǎng),構(gòu)建起一個(gè)內(nèi)容與方法的科學(xué)的網(wǎng)絡(luò)系統(tǒng)。 3)主動(dòng)復(fù)習(xí)總結(jié)提高。進(jìn)行章節(jié)總結(jié)是非常重要的。初中時(shí)是教師替學(xué)生做總結(jié),做得細(xì)致,深刻,完整。高中是自己給自己做總結(jié),老師不但不給做,而且是講到哪,考到哪,不留復(fù)習(xí)時(shí)間,也沒有明確指出做總結(jié)的時(shí)間。 符合一定條件的動(dòng)點(diǎn)所形成的圖形,或者說,符合一定條件的點(diǎn)的全體所組成的集合,叫做滿足該條件的點(diǎn)的軌跡。 軌跡,包含兩個(gè)方面的問題:凡在軌跡上的點(diǎn)都符合給定的條件,這叫做軌跡的純粹性(也叫做必要性);凡不在軌跡上的點(diǎn)都不符合給定的條件,也就是符合給定條件的點(diǎn)必在軌跡上,這叫做軌跡的完備性(也叫做充分性)。 【軌跡方程】就是與幾何軌跡對(duì)應(yīng)的代數(shù)描述。 一、求動(dòng)點(diǎn)的軌跡方程的基本步驟 、薄⒔⑦m當(dāng)?shù)淖鴺?biāo)系,設(shè)出動(dòng)點(diǎn)M的坐標(biāo); 、病懗鳇c(diǎn)M的集合; 、、列出方程=0; ⒋、化簡(jiǎn)方程為最簡(jiǎn)形式; 、怠z驗(yàn)。 二、求動(dòng)點(diǎn)的軌跡方程的常用方法:求軌跡方程的.方法有多種,常用的有直譯法、定義法、相關(guān)點(diǎn)法、參數(shù)法和交軌法等。 、、直譯法:直接將條件翻譯成等式,整理化簡(jiǎn)后即得動(dòng)點(diǎn)的軌跡方程,這種求軌跡方程的方法通常叫做直譯法。 ⒉、定義法:如果能夠確定動(dòng)點(diǎn)的軌跡滿足某種已知曲線的定義,則可利用曲線的定義寫出方程,這種求軌跡方程的方法叫做定義法。 、、相關(guān)點(diǎn)法:用動(dòng)點(diǎn)Q的坐標(biāo)x,y表示相關(guān)點(diǎn)P的坐標(biāo)x0、y0,然后代入點(diǎn)P的坐標(biāo)(x0,y0)所滿足的曲線方程,整理化簡(jiǎn)便得到動(dòng)點(diǎn)Q軌跡方程,這種求軌跡方程的方法叫做相關(guān)點(diǎn)法。 ⒋、參數(shù)法:當(dāng)動(dòng)點(diǎn)坐標(biāo)x、y之間的直接關(guān)系難以找到時(shí),往往先尋找x、y與某一變數(shù)t的關(guān)系,得再消去參變數(shù)t,得到方程,即為動(dòng)點(diǎn)的軌跡方程,這種求軌跡方程的方法叫做參數(shù)法。 、、交軌法:將兩動(dòng)曲線方程中的參數(shù)消去,得到不含參數(shù)的方程,即為兩動(dòng)曲線交點(diǎn)的軌跡方程,這種求軌跡方程的方法叫做交軌法。 _譯法:求動(dòng)點(diǎn)軌跡方程的一般步驟 、俳ㄏ怠⑦m當(dāng)?shù)淖鴺?biāo)系; 、谠O(shè)點(diǎn)——設(shè)軌跡上的任一點(diǎn)P(x,y); 、哿惺健谐鰟(dòng)點(diǎn)p所滿足的關(guān)系式; 、艽鷵Q——依條件的特點(diǎn),選用距離公式、斜率公式等將其轉(zhuǎn)化為關(guān)于X,Y的方程式,并化簡(jiǎn); 、葑C明——證明所求方程即為符合條件的動(dòng)點(diǎn)軌跡方程。 【數(shù)學(xué)高考知識(shí)點(diǎn)總結(jié)】相關(guān)文章: 數(shù)學(xué)高考知識(shí)點(diǎn)總結(jié)12-06 數(shù)學(xué)高考知識(shí)點(diǎn)總結(jié)04-14 高考數(shù)學(xué)知識(shí)點(diǎn)總結(jié)12-09 數(shù)學(xué)高考知識(shí)點(diǎn)總結(jié)15篇12-07 數(shù)學(xué)高考知識(shí)點(diǎn)總結(jié)(15篇)12-08 數(shù)學(xué)高考知識(shí)點(diǎn)總結(jié)精選15篇04-16 數(shù)學(xué)高考知識(shí)點(diǎn)總結(jié)15篇04-15數(shù)學(xué)高考知識(shí)點(diǎn)總結(jié)4
數(shù)學(xué)高考知識(shí)點(diǎn)總結(jié)5
數(shù)學(xué)高考知識(shí)點(diǎn)總結(jié)6
數(shù)學(xué)高考知識(shí)點(diǎn)總結(jié)7
數(shù)學(xué)高考知識(shí)點(diǎn)總結(jié)8
數(shù)學(xué)高考知識(shí)點(diǎn)總結(jié)11
數(shù)學(xué)高考知識(shí)點(diǎn)總結(jié)12
數(shù)學(xué)高考知識(shí)點(diǎn)總結(jié)13
數(shù)學(xué)高考知識(shí)點(diǎn)總結(jié)14
數(shù)學(xué)高考知識(shí)點(diǎn)總結(jié)15