函數(shù)概念與基本初等函數(shù)手抄報(bào)
(1)函數(shù)
①進(jìn)一步體會(huì)函數(shù)是描述變量之間的依賴關(guān)系的重要數(shù)學(xué)模型,在此基礎(chǔ)上學(xué)習(xí)用集合與對應(yīng)的語言來刻畫函數(shù),體會(huì)對應(yīng)關(guān)系在刻畫函數(shù)概念中的作用;了解構(gòu)成函數(shù)的要素,會(huì)求一些簡單函數(shù)的定義域和值域;了解映射的概念。
、谠趯(shí)際情境中,會(huì)根據(jù)不同的需要選擇恰當(dāng)?shù)姆椒?如圖象法、列表法、解析法)表示函數(shù)。
、哿私夂唵蔚姆侄魏瘮(shù),并能簡單應(yīng)用。
、芡ㄟ^已學(xué)過的函數(shù)特別是二次函數(shù),理解函數(shù)的單調(diào)性、最大(小)值及其幾何意義;結(jié)合具體函數(shù),了解奇偶性的'含義。
、輰W(xué)會(huì)運(yùn)用函數(shù)圖象理解和研究函數(shù)的性質(zhì)(參見例1)。
(2)指數(shù)函數(shù)
、(細(xì)胞的分裂,考古中所用的C的衰減,藥物在人體內(nèi)殘留量的變化等),了解指數(shù)函數(shù)模型的實(shí)際背景。
、诶斫庥欣碇笖(shù)冪的含義,通過具體實(shí)例了解實(shí)數(shù)指數(shù)冪的意義,掌握冪的運(yùn)算。
、劾斫庵笖(shù)函數(shù)的概念和意義,能借助計(jì)算器或計(jì)算機(jī)畫出具體指數(shù)函數(shù)的圖象,探索并理解指數(shù)函數(shù)的單調(diào)性與特殊點(diǎn)。
④在解決簡單實(shí)際問題的過程中,體會(huì)指數(shù)函數(shù)是一類重要的函數(shù)模型(參見例2)。
(3)對數(shù)函數(shù)
、倮斫鈱(shù)的概念及其運(yùn)算性質(zhì),知道用換底公式能將一般對數(shù)轉(zhuǎn)化成自然對數(shù)或常用對數(shù);通過閱讀材料,了解對數(shù)的產(chǎn)生歷史以及對簡化運(yùn)算的作用。
、谕ㄟ^具體實(shí)例,直觀了解對數(shù)函數(shù)模型所刻畫的數(shù)量關(guān)系,初步理解對數(shù)函數(shù)的概念,體會(huì)對數(shù)函數(shù)是一類重要的函數(shù)模型;能借助計(jì)算器或計(jì)算機(jī)畫出具體對數(shù)函數(shù)的圖象,探索并了解對數(shù)函數(shù)的單調(diào)性與特殊點(diǎn)。
、壑乐笖(shù)函數(shù) 與對數(shù)函數(shù) 互為反函數(shù)(a>0,a≠1)。
(4)冪函數(shù)
通過實(shí)例,了解冪函數(shù)的概念;結(jié)合函數(shù) 的圖象,了解它們的變化情況。
(5)函數(shù)與方程
、俳Y(jié)合二次函數(shù)的圖象,判斷一元二次方程根的存在性及根的個(gè)數(shù),從而了解函數(shù)的零點(diǎn)與方程根的聯(lián)系。
、诟鶕(jù)具體函數(shù)的圖象,能夠借助計(jì)算器用二分法求相應(yīng)方程的近似解,了解這種方法是求方程近似解的常用方法。
(6)函數(shù)模型及其應(yīng)用
、倮糜(jì)算工具,比較指數(shù)函數(shù)、對數(shù)函數(shù)以及冪函數(shù)增長差異;結(jié)合實(shí)例體會(huì)直線上升、指數(shù)爆炸、對數(shù)增長等不同函數(shù)類型增長的含義。
、谑占恍┥鐣(huì)生活中普遍使用的函數(shù)模型(指數(shù)函數(shù)、對數(shù)函數(shù)、冪函數(shù)、分段函數(shù)等)的實(shí)例,了解函數(shù)模型的廣泛應(yīng)用。
【函數(shù)概念與基本初等函數(shù)手抄報(bào)】相關(guān)文章:
1.高考數(shù)學(xué)復(fù)習(xí)基本初等函數(shù)知識點(diǎn)歸納
5.對應(yīng)關(guān)系下的函數(shù)手抄報(bào)