久久综合色一综合色88欧美|久久er热在这里只有精品66|国产福利一区二区不卡|日本精品动漫二区三区

    1. <address id="l3apk"><var id="l3apk"><source id="l3apk"></source></var></address>

      高考物理電磁感應知識點

      時間:2024-09-20 20:58:38 高考物理 我要投稿

      高考物理電磁感應知識點

        漫長的學習生涯中,說起知識點,應該沒有人不熟悉吧?知識點在教育實踐中,是指對某一個知識的泛稱。哪些知識點能夠真正幫助到我們呢?以下是小編整理的高考物理電磁感應知識點,僅供參考,希望能夠幫助到大家。

      高考物理電磁感應知識點

      高考物理電磁感應知識點1

        1.電磁感應現象:利用磁場產生電流的現象叫做電磁感應,產生的電流叫做感應電流。

        (1)產生感應電流的條件:穿過閉合電路的磁通量發(fā)生變化,即Δ≠0。(2)產生感應電動勢的條件:無論回路是否閉合,只要穿過線圈平面的磁通量發(fā)生變化,線路中就有感應電動勢。產生感應電動勢的那部分導體相當于電源。

        (2)電磁感應現象的實質是產生感應電動勢,如果回路閉合,則有感應電流,回路不閉合,則只有感應電動勢而無感應電流。

        2.磁通量

        (1)定義:磁感應強度B與垂直磁場方向的面積S的乘積叫做穿過這個面的磁通量,定義式:=BS。如果面積S與B不垂直,應以B乘以在垂直于磁場方向上的投影面積S′,即=BS′,國際單位:Wb

        求磁通量時應該是穿過某一面積的磁感線的凈條數。任何一個面都有正、反兩個面;磁感線從面的正方向穿入時,穿過該面的磁通量為正。反之,磁通量為負。所求磁通量為正、反兩面穿入的磁感線的代數和。

        3.楞次定律

        (1)楞次定律:感應電流的磁場,總是阻礙引起感應電流的磁通量的變化。楞次定律適用于一般情況的感應電流方向的判定,而右手定則只適用于導線切割磁感線運動的情況,此種情況用右手定則判定比用楞次定律判定簡便。

        (2)對楞次定律的理解

        ①誰阻礙誰---感應電流的磁通量阻礙產生感應電流的磁通量。

       、谧璧K什么---阻礙的是穿過回路的磁通量的變化,而不是磁通量本身。③如何阻礙---原磁通量增加時,感應電流的磁場方向與原磁場方向相反;當原磁通量減少時,感應電流的磁場方向與原磁場方向相同,即“增反減同”。④阻礙的結果---阻礙并不是阻止,結果是增加的'還增加,減少的還減少。

        (3)楞次定律的另一種表述:感應電流總是阻礙產生它的那個原因,表現形式有三種:

       、僮璧K原磁通量的變化;②阻礙物體間的相對運動;③阻礙原電流的變化(自感)。

        4.法拉第電磁感應定律

        電路中感應電動勢的大小,跟穿過這一電路的磁通量的變化率成正比。表達式E=nΔ/Δt

        當導體做切割磁感線運動時,其感應電動勢的計算公式為E=BLvsinθ。當B、L、v三者兩兩垂直時,感應電動勢E=BLv。(1)兩個公式的選用方法E=nΔ/Δt計算的是在Δt時間內的平均電動勢,只有當磁通量的變化率是恒定不變時,它算出的才是瞬時電動勢。E=BLvsinθ中的v若為瞬時速度,則算出的就是瞬時電動勢:若v為平均速度,算出的就是平均電動勢。(2)公式的變形

       、佼斁圈垂直磁場方向放置,線圈的面積S保持不變,只是磁場的磁感強度均勻變化時,感應電動勢:E=nSΔB/Δt。

       、谌绻鸥袕姸炔蛔,而線圈面積均勻變化時,感應電動勢E=Nbδs/Δt。

        5.自感現象

        (1)自感現象:由于導體本身的電流發(fā)生變化而產生的電磁感應現象。(2)自感電動勢:在自感現象中產生的感應電動勢叫自感電動勢。自感電動勢的大小取決于線圈自感系數和本身電流變化的快慢,自感電動勢方向總是阻礙電流的變化。

        6.日光燈工作原理

        (1)起動器的作用:利用動觸片和靜觸片的接通與斷開起一個自動開關的作用,起動的關鍵就在于斷開的瞬間。

        (2)鎮(zhèn)流器的作用:日光燈點燃時,利用自感現象產生瞬時高壓;日光燈正常發(fā)光時,利用自感現象,對燈管起到降壓限流作用。

        7.電磁感應中的電路問題

        在電磁感應中,切割磁感線的導體或磁通量發(fā)生變化的回路將產生感應電動勢,該導體或回路就相當于電源,將它們接上電容器,便可使電容器充電;將它們接上電阻等用電器,便可對用電器供電,在回路中形成電流。因此,電磁感應問題往往與電路問題聯系在一起。解決與電路相聯系的電磁感應問題的基本方法是:

        (1)用法拉第電磁感應定律和楞次定律確定感應電動勢的大小和方向。(2)畫等效電路。

        (3)運用全電路歐姆定律,串并聯電路性質,電功率等公式聯立求解。

        8.電磁感應現象中的力學問題

        (1)通過導體的感應電流在磁場中將受到安培力作用,電磁感應問題往往和力學問題聯系在一起,基本方法是:①用法拉第電磁感應定律和楞次定律求感應電動勢的大小和方向。②求回路中電流強度。

       、鄯治鲅芯繉w受力情況(包含安培力,用左手定則確定其方向)。④列動力學方程或平衡方程求解。

        (2)電磁感應力學問題中,要抓好受力情況,運動情況的動態(tài)分析,導體受力運動產生感應電動勢→感應電流→通電導體受安培力→合外力變化→加速度變化→速度變化→周而復始地循環(huán),循環(huán)結束時,加速度等于零,導體達穩(wěn)定運動狀態(tài),抓住a=0時,速度v達最大值的特點。

        9.電磁感應中能量轉化問題

        導體切割磁感線或閉合回路中磁通量發(fā)生變化,在回路中產生感應電流,機械能或其他形式能量便轉化為電能,具有感應電流的導體在磁場中受安培力作用或通過電阻發(fā)熱,又可使電能轉化為機械能或電阻的內能,因此,電磁感應過程總是伴隨著能量轉化,用能量轉化觀點研究電磁感應問題常是導體的穩(wěn)定運動(勻速直線運動或勻速轉動),對應的受力特點是合外力為零,能量轉化過程常常是機械能轉化為內能,解決這類問題的基本方法是:

        (1)用法拉第電磁感應定律和楞次定律確定感應電動勢的大小和方向。

        (2)畫出等效電路,求出回路中電阻消耗電功率表達式。

        (3)分析導體機械能的變化,用能量守恒關系得到機械功率的改變與回路中電功率的改變所滿足的方程。

        10.電磁感應中圖像問題

        電磁感應現象中圖像問題的分析,要抓住磁通量的變化是否均勻,從而推知感應電動勢(電流)大小是否恒定。用楞次定律判斷出感應電動勢(或電流)的方向,從而確定其正負,以及在坐標中的范圍。

        另外,要正確解決圖像問題,必須能根據圖像的意義把圖像反映的規(guī)律對應到實際過程中去,又能根據實際過程的抽象規(guī)律對應到圖像中去,最終根據實際過程的物理規(guī)律進行判斷。

      高考物理電磁感應知識點2

        一、電磁感應現象:

        1、只要穿過閉合回路中的磁通量發(fā)生變化,閉合回路中就會產生感應電流,如果電路不閉合只會產生感應電動勢。

        這種利用磁場產生電流的現象叫電磁感應,是1831年法拉第發(fā)現的。

        回路中產生感應電動勢和感應電流的條件是回路所圍面積中的磁通量變化,因此研究磁通量的變化是關鍵,由磁通量的廣義公式中(是B與S的夾角)看,磁通量的變化可由面積的變化引起;可由磁感應強度B的變化引起;可由B與S的夾角的變化引起;也可由B、S、中的兩個量的變化,或三個量的同時變化引起。

        下列各圖中,回路中的磁通量是怎么的變化,我們把回路中磁場方向定為磁通量方向(只是為了敘述方便),則各圖中磁通量在原方向是增強還是減弱。

       。1)圖:由彈簧或導線組成回路,在勻強磁場B中,先把它撐開,而后放手,到恢復原狀的過程中。

       。2)圖:裸銅線在裸金屬導軌上向右勻速運動過程中。

       。3)圖:條形磁鐵插入線圈的過程中。

       。4)圖:閉合線框遠離與它在同一平面內通電直導線的過程中。

       。5)圖:同一平面內的兩個金屬環(huán)A、B,B中通入電流,電流強度I在逐漸減小的過程中。

       。6)圖:同一平面內的A、B回路,在接通K的瞬時。

       。7)圖:同一鐵芯上兩個線圈,在滑動變阻器的滑鍵P向右滑動過程中。

        (8)圖:水平放置的條形磁鐵旁有一閉合的水平放置線框從上向下落的過程中。

        2、閉合回路中的一部分導體在磁場中作切割磁感線運動時,可以產生感應電動勢,感應電流,這是初中學過的,其本質也是閉合回路中磁通量發(fā)生變化。

        3、產生感應電動勢、感應電流的條件:導體在磁場里做切割磁感線運動時,導體內就產生感應電動勢;穿過線圈的磁量發(fā)生變化時,線圈里就產生感應電動勢。如果導體是閉合電路的一部分,或者線圈是閉合的,就產生感應電流。從本質上講,上述兩種說法是一致的,所以產生感應電流的條件可歸結為:穿過閉合電路的磁通量發(fā)生變化。

        二、楞次定律:

        1、1834年德國物理學家楞次通過實驗總結出:感應電流的方向總是要使感應電流的磁場阻礙引起感應電流的磁通量的變化。

        即磁通量變化感應電流感應電流磁場磁通量變化。

        2、當閉合電路中的磁通量發(fā)生變化引起感應電流時,用楞次定律判斷感應電流的方向。

        楞次定律的內容:感應電流的磁場總是阻礙引起感應電流為磁通量變化。

        楞次定律是判斷感應電動勢方向的定律,但它是通過感應電流方向來表述的。按照這個定律,感應電流只能采取這樣一個方向,在這個方向下的感應電流所產生的磁場一定是阻礙引起這個感應電流的那個變化的磁通量的變化。我們把“引起感應電流的那個變化的磁通量”叫做“原磁道”。因此楞次定律可以簡單表達為:感應電流的磁場總是阻礙原磁通的變化。所謂阻礙原磁通的變化是指:當原磁通增加時,感應電流的磁場(或磁通)與原磁通方向相反,阻礙它的增加;當原磁通減少時,感應電流的磁場與原磁通方向相同,阻礙它的減少。從這里可以看出,正確理解感應電流的磁場和原磁通的關系是理解楞次定律的關鍵。要注意理解“阻礙”和“變化”這四個字,不能把“阻礙”理解為“阻止”,原磁通如果增加,感應電流的磁場只能阻礙它的增加,而不能阻止它的增加,而原磁通還是要增加的。更不能感應電流的“磁場”阻礙“原磁通”,尤其不能把阻礙理解為感應電流的磁場和原磁道方向相反。正確的理解應該是:通過感應電流的磁場方向和原磁通的方向的相同或相反,來達到“阻礙”原磁通的“變化”即減或增。楞次定律所反映提這樣一個物理過程:原磁通變化時(原變),產生感應電流(I感),這是屬于電磁感應的條件問題;感應電流一經產生就在其周圍空間激發(fā)磁場(感),這就是電流的磁效應問題;而且I感的方向就決定了感的方向(用安培右手螺旋定則判定);感阻礙原的變化——這正是楞次定律所解決的問題。這樣一個復雜的過程,可以用圖表理順如下:

        楞次定律也可以理解為:感應電流的效果總是要反抗(或阻礙)產生感應電流的原因,即只要有某種可能的過程使磁通量的變化受到阻礙,閉合電路就會努力實現這種過程:

       。1)阻礙原磁通的變化(原始表速);

       。2)阻礙相對運動,可理解為“來拒去留”,具體表現為:若產生感應電流的回路或其某些部分可以自由運動,則它會以它的運動來阻礙穿過路的磁通的變化;若引起原磁通變化為磁體與產生感應電流的可動回路發(fā)生相對運動,而回路的面積又不可變,則回路得以它的運動來阻礙磁體與回路的相對運動,而回路將發(fā)生與磁體同方向的運動;

       。3)使線圈面積有擴大或縮小的趨勢;

       。4)阻礙原電流的變化(自感現象)。

        利用上述規(guī)律分析問題可獨辟蹊徑,達到快速準確的`效果。如圖1所示,在O點懸掛一輕質導線環(huán),拿一條形磁鐵沿導線環(huán)的軸線方向突然向環(huán)內插入,判斷在插入過程中導環(huán)如何運動。若按常規(guī)方法,應先由楞次定律判斷出環(huán)內感應電流的方向,再由安培定則確定環(huán)形電流對應的磁極,由磁極的相互作用確定導線環(huán)的運動方向。若直接從感應電流的效果來分析:條形磁鐵向環(huán)內插入過程中,環(huán)內磁通量增加,環(huán)內感應電流的效果將阻礙磁通量的增加,由磁通量減小的方向運動。因此環(huán)將向右擺動。顯然,用第二種方法判斷更簡捷。

        應用楞次定律判斷感應電流方向的具體步驟:

       。1)查明原磁場的方向及磁通量的變化情況;

       。2)根據楞次定律中的“阻礙”確定感應電流產生的磁場方向;

       。3)由感應電流產生的磁場方向用安培表判斷出感應電流的方向。

        3、當閉合電路中的一部分導體做切割磁感線運動時,用右手定則可判定感應電流的方向。

        運動切割產生感應電流是磁通量發(fā)生變化引起感應電流的特例,所以判定電流方向的右手定則也是楞次定律的特例。用右手定則能判定的,一定也能用楞次定律判定,只是不少情況下,不如用右手定則判定的方便簡單。反過來,用楞次定律能判定的,并不是用右手定則都能判定出來。如圖2所示,閉合圖形導線中的磁場逐漸增強,因為看不到切割,用右手定則就難以判定感應電流的方向,而用楞次定律就很容易判定。

        要注意左手定則與右手定則應用的區(qū)別,兩個定則的應用可簡單總結為:“因電而動”用右手,“因動而電”用右手,因果關系不可混淆。

        物理學習方法

        步驟1、模型歸類

        做過一定量的物理題目之后,會發(fā)現很多題目其實思考方法是一樣的,我們需要按物理模型進行分類,用一套方法解一類題目。例如宏觀的行星運動和微觀的電荷在磁場中的偏轉都屬于勻速圓周運動,關鍵都是找出什么力_了向心力;此外還有杠桿類的題目,要想象出力矩平衡的特殊情況,還有關于汽車啟動問題的考慮方法其實同樣適用于起重機吊重物等等。物理不需要做很多題目,能夠判斷出物理模型,將方法對號入座,就已經成功了一半。

        步驟2、解題規(guī)范

        高考越來越重視解題規(guī)范,體現在物理學科中就是文字說明。解一道題不是列出公式,得出答案就可以的,必須標明步驟,說明用的是什么定理,為什么能用這個定理,有時還需要說明物體在特殊時刻的特殊狀態(tài)。這樣既讓老師一目了然,又有利于理清自己的思路,還方便檢查,最重要的是能幫助我們在分步驟評分的評分標準中少丟幾分。

        步驟3、大膽猜想

        物理題目常常是假想出的理想情況,幾乎都可以用我們學過的知識來解釋,所以當看到一道題目的背景很陌生時,就像今年高考物理的壓軸題,不要慌了手腳。在最后的20分鐘左右的時間里要保持沉著冷靜,根據給出的物理量和物理關系,把有關的公式都列出來,大膽地猜想磁場的勢能與重力場的勢能是怎樣復合的,取最值的情況是怎樣的,充分利用圖像_的變化規(guī)律和數據,在沒有完全理解題目的情況下多得幾分是完全有可能的。

        物理學習技巧

        圖象法

        應用圖象描述規(guī)律、解決問題是物理學中重要的手段之一。因圖象中包含豐富的語言、解決問題時簡明快捷等特點,在高考中得到充分體現,且比重不斷加大。

        涉及內容貫穿整個物理學。描述物理規(guī)律的最常用方法有公式法和圖象法,所以在解決此類問題時要善于將公式與圖象合一相長。

        對稱法

        利用對稱法分析解決物理問題,可以避免復雜的數學演算和推導,直接抓住問題的實質,出奇制勝,快速簡便地求解問題。像課本中伽利略認為圓周運動最美(對稱)為牛頓得到萬有引力定律奠定基礎。

        估算法

        有些物理問題本身的結果,并不一定需要有一個很準確的答案,但是,往往需要我們對事物有一個預測的估計值。像盧瑟福利用經典的粒子的散射實驗根據功能原理估算出原子核的半徑。

        采用“估算”的方法能忽略次要因素,抓住問題的主要本質,充分應用物理知識進行快速數量級的計算。

        微元法

        在研究某些物理問題時,需將其分解為眾多微小的“元過程”,而且每個“元過程”所遵循的規(guī)律是相同的,這樣,我們只需分析這些“元過程”,然后再將“元過程”進行必要的數學方法或物理思想處理,進而使問題求解。像課本中提到利用計算摩擦變力做功、導出電流強度的微觀表達式等都屬于利用微元思想的應用。

      【高考物理電磁感應知識點】相關文章:

      高考物理電磁感應知識點歸納05-14

      高考物理電磁感應的復習知識點09-24

      高考物理之電磁感應知識點歸納12-08

      高考物理電磁感應學案12-09

      關于高考物理電磁感應公式講解12-08

      高考物理知識點03-08

      高考物理知識點08-30

      高考物理的知識點07-10

      高考物理必考知識點10-19