[經(jīng)典]高考數(shù)學(xué)知識(shí)點(diǎn)總結(jié)15篇
總結(jié)是事后對(duì)某一時(shí)期、某一項(xiàng)目或某些工作進(jìn)行回顧和分析,從而做出帶有規(guī)律性的結(jié)論,它在我們的學(xué)習(xí)、工作中起到呈上啟下的作用,讓我們好好寫一份總結(jié)吧。那么總結(jié)要注意有什么內(nèi)容呢?以下是小編幫大家整理的高考數(shù)學(xué)知識(shí)點(diǎn)總結(jié),僅供參考,歡迎大家閱讀。
高考數(shù)學(xué)知識(shí)點(diǎn)總結(jié)1
圓與圓的位置關(guān)系的判斷方法
一、設(shè)兩個(gè)圓的半徑為R和r,圓心距為d。
則有以下五種關(guān)系:
1、d>R+r兩圓外離;兩圓的圓心距離之和大于兩圓的'半徑之和。
2、d=R+r兩圓外切;兩圓的圓心距離之和等于兩圓的半徑之和。
3、d=R—r兩圓內(nèi)切;兩圓的圓心距離之和等于兩圓的半徑之差。
4、d 5、d 二、圓和圓的位置關(guān)系,還可用有無(wú)公共點(diǎn)來(lái)判斷: 1、無(wú)公共點(diǎn),一圓在另一圓之外叫外離,在之內(nèi)叫內(nèi)含。 2、有唯一公共點(diǎn)的,一圓在另一圓之外叫外切,在之內(nèi)叫內(nèi)切。 3、有兩個(gè)公共點(diǎn)的叫相交。兩圓圓心之間的距離叫做圓心距。 1.集合與邏輯:集合的邏輯與運(yùn)算(一般出現(xiàn)在高考卷的第一道選擇題)、簡(jiǎn)易邏輯、充要條件 2.函數(shù):映射與函數(shù)、函數(shù)解析式與定義域、值域與值、反函數(shù)、三大性質(zhì)、函數(shù)圖象、指數(shù)函數(shù)、對(duì)數(shù)函數(shù)、函數(shù)的應(yīng)用 3.數(shù)列:數(shù)列的有關(guān)概念、等差數(shù)列、等比數(shù)列、數(shù)列求通項(xiàng)、求和 4.三角函數(shù):有關(guān)概念、同角關(guān)系與誘導(dǎo)公式、和差倍半公式、求值、化簡(jiǎn)、證明、三角函數(shù)的圖像及其性質(zhì)、應(yīng)用 5.平面向量:初等運(yùn)算、坐標(biāo)運(yùn)算、數(shù)量積及其應(yīng)用 6.不等式:概念與性質(zhì)、均值不等式、不等式的證明、不等式的解法、絕對(duì)值不等式(經(jīng)常出現(xiàn)在大題的選做題里)、不等式的應(yīng)用 7.直線與圓的方程:直線的方程、兩直線的位置關(guān)系、線性規(guī)劃、圓、直線與圓的位置關(guān)系 8.圓錐曲線方程:橢圓、雙曲線、拋物線、直線與圓錐曲線的位置關(guān)系、軌跡問(wèn)題、圓錐曲線的應(yīng)用 9.直線、平面、簡(jiǎn)單幾何體:空間直線、直線與平面、平面與平面、棱柱、棱錐、球、空間向量 10.排列、組合和概率:排列、組合應(yīng)用題、二項(xiàng)式定理及其應(yīng)用 11.概率與統(tǒng)計(jì):概率、分布列、期望、方差、抽樣、正態(tài)分布 12.導(dǎo)數(shù):導(dǎo)數(shù)的概念、求導(dǎo)、導(dǎo)數(shù)的應(yīng)用 13.復(fù)數(shù):復(fù)數(shù)的概念與運(yùn)算 圓的標(biāo)準(zhǔn)方程(x-a)2+(y-b)2=r2注:(a,b)是圓心坐標(biāo) 圓的一般方程x2+y2+Dx+Ey+F=0注:D2+E2-4F>0 拋物線標(biāo)準(zhǔn)方程y2=2pxy2=-2p__2=2pyx2=-2py 直棱柱側(cè)面積S=c__h斜棱柱側(cè)面積S=c'__h 正棱錐側(cè)面積S=1/2c__h'正棱臺(tái)側(cè)面積S=1/2(c+c')h' 圓臺(tái)側(cè)面積S=1/2(c+c')l=pi(R+r)l球的表面積S=4pi__r2 圓柱側(cè)面積S=c__h=2pi__h圓錐側(cè)面積S=1/2__c__l=pi__r__l 弧長(zhǎng)公式l=a__ra是圓心角的弧度數(shù)r>0扇形面積公式s=1/2__l__r 錐體體積公式V=1/3__S__H圓錐體體積公式V=1/3__pi__r2h 斜棱柱體積V=S'L注:其中,S'是直截面面積,L是側(cè)棱長(zhǎng) 柱體體積公式V=s__h圓柱體V=pi__r2h 等差數(shù)列的基本性質(zhì) 公差為d的等差數(shù)列,各項(xiàng)同加一數(shù)所得數(shù)列仍是等差數(shù)列,其公差仍為d. 公差為d的等差數(shù)列,各項(xiàng)同乘以常數(shù)k所得數(shù)列仍是等差數(shù)列,其公差為kd. 若{an}{bn}為等差數(shù)列,則{an±bn}與{kan+bn}(k、b為非零常數(shù))也是等差數(shù)列. 對(duì)任何m、n,在等差數(shù)列中有:an=am+(n-m)d(m、n∈N+),特別地,當(dāng)m=1時(shí),便得等差數(shù)列的通項(xiàng)公式,此式較等差數(shù)列的通項(xiàng)公式更具有一般性. 一般地,當(dāng)m+n=p+q(m,n,p,q∈N+)時(shí),am+an=ap+aq. 公差為d的等差數(shù)列,從中取出等距離的項(xiàng),構(gòu)成一個(gè)新數(shù)列,此數(shù)列仍是等差數(shù)列,其公差為kd(k為取出項(xiàng)數(shù)之差). 下表成等差數(shù)列且公差為m的項(xiàng)ak.ak+m.ak+2m.....(k,m∈N+)組成公差為md的等差數(shù)列。 在等差數(shù)列中,從第二項(xiàng)起,每一項(xiàng)(有窮數(shù)列末項(xiàng)除外)都是它前后兩項(xiàng)的等差中項(xiàng). 當(dāng)公差d>0時(shí),等差數(shù)列中的數(shù)隨項(xiàng)數(shù)的增大而增大;當(dāng)d<0時(shí),等差數(shù)列中的數(shù)隨項(xiàng)數(shù)的減少而減小;d=0時(shí),等差數(shù)列中的數(shù)等于一個(gè)常數(shù). 一次函數(shù)的定義 一次函數(shù),也作線性函數(shù),在x,y坐標(biāo)軸中可以用一條直線表示,當(dāng)一次函數(shù)中的一個(gè)變量的值確定時(shí),可以用一元一次方程確定另一個(gè)變量的值。 函數(shù)的表示方法 列表法:一目了然,使用起來(lái)方便,但列出的對(duì)應(yīng)值是有限的,不易看出自變量與函數(shù)之間的對(duì)應(yīng)規(guī)律。 解析式法:簡(jiǎn)單明了,能夠準(zhǔn)確地反映整個(gè)變化過(guò)程中自變量與函數(shù)之間的相依關(guān)系,但有些實(shí)際問(wèn)題中的函數(shù)關(guān)系,不能用解析式表示。 圖象法:形象直觀,但只能近似地表達(dá)兩個(gè)變量之間的函數(shù)關(guān)系。 一次函數(shù)的性質(zhì) 一般地,形如y=kx+b(k,b是常數(shù),且k≠0),那么y叫做x的一次函數(shù),當(dāng)b=0時(shí),y=kx+b即y=kx,所以說(shuō)正比例函數(shù)是一種特殊的一次函數(shù) 注:一次函數(shù)一般形式y(tǒng)=kx+b(k不為0) a)k不為0 b)x的指數(shù)是1 c)b取任意實(shí)數(shù) 一次函數(shù)y=kx+b的圖像是經(jīng)過(guò)(0,b)和(-b/k,0)兩點(diǎn)的一條直線,我們稱它為直線y=kx+b,它可以看做直線y=kx平移|b|個(gè)單位長(zhǎng)度得到。(當(dāng)b>0時(shí),向上平移;b<0時(shí),向下平移) 空間幾何體的三視圖 定義三視圖:正視圖(光線從幾何體的前面向后面正投影);側(cè)視圖(從左向右)、俯視圖(從上向下) 注: 正視圖反映了物體上下、左右的位置關(guān)系,即反映了物體的高度和長(zhǎng)度; 俯視圖反映了物體左右、前后的位置關(guān)系,即反映了物體的長(zhǎng)度和寬度; 側(cè)視圖反映了物體上下、前后的位置關(guān)系,即反映了物體的高度和寬度。 高中數(shù)學(xué)的復(fù)習(xí)方法 一、分類記憶法 遇到數(shù)學(xué)公式較多,一時(shí)難于記憶時(shí),可以將這些公式適當(dāng)分組。例如求導(dǎo)公式有18個(gè),就可以分成四組來(lái)記:(1)常數(shù)與冪函數(shù)的導(dǎo)數(shù)(2個(gè));(2)指數(shù)與對(duì)數(shù)函數(shù)的導(dǎo)數(shù)(4個(gè));(3)三角函數(shù)的導(dǎo)數(shù)(6個(gè));(4)反三角函數(shù)的導(dǎo)數(shù)(6個(gè))。求導(dǎo)法則有7個(gè),可分為兩組來(lái)記:(1)和、差、積、商復(fù)合函數(shù)的導(dǎo)數(shù)(4個(gè));(2)反函數(shù)、隱函數(shù)、冪指數(shù)函數(shù)的導(dǎo)數(shù)(3個(gè))。 二、推理記憶法 許多數(shù)學(xué)知識(shí)之間邏輯關(guān)系比較明顯,要記住這些知識(shí),只需記憶一個(gè),而其余可利用推理得到,這種記憶稱為推理記憶。例如,平行四邊形的性質(zhì),我們只要記住它的定義,由定義推理得它的任一對(duì)角線把它平分成兩個(gè)全等三角形,繼而又推得它的對(duì)邊相等,對(duì)角相等,相鄰角互補(bǔ),兩條對(duì)角線互相平分等性質(zhì)。 三、標(biāo)志記憶法 在學(xué)習(xí)某一章節(jié)知識(shí)時(shí),先看一遍,對(duì)于重要部分用彩筆在下面畫上波浪線,再記憶時(shí),就不需要將整個(gè)章節(jié)的內(nèi)容從頭到尾逐字逐句的`看了,只要看劃重點(diǎn)的地方并在它的啟示下就能記住本章節(jié)主要內(nèi)容,這種記憶稱為標(biāo)志記憶。 四、回想記憶法 在重復(fù)記憶某一章節(jié)的知識(shí)時(shí),不看具體內(nèi)容,而是通過(guò)大腦回想達(dá)到重復(fù)記憶的目的,這種記憶稱為回想記憶。在實(shí)際記憶時(shí),回想記憶法與標(biāo)志記憶法是配合使用的。 高中數(shù)學(xué)的做作業(yè)的注意事項(xiàng) 1、先看書(shū)后作業(yè),看書(shū)和作業(yè)相結(jié)合。只有先弄懂課本的基本原理和法則,才能順利地完成作業(yè),減少作業(yè)中的錯(cuò)誤,也可以達(dá)到鞏固知識(shí)的目的。 2、注意審題。要搞清題目中所給予的條件,明確題目的要求,應(yīng)用所學(xué)的知識(shí),找到解決問(wèn)題的途徑和方法。 3、態(tài)度要認(rèn)真,推理要嚴(yán)謹(jǐn),養(yǎng)成“言必有據(jù)”的習(xí)慣。準(zhǔn)確運(yùn)用所學(xué)過(guò)的定律、定理、公式、概念等。作業(yè)之后,認(rèn)真檢查驗(yàn)算,避免不應(yīng)有的錯(cuò)誤發(fā)生。 4、作業(yè)要獨(dú)立完成。只有經(jīng)過(guò)自己動(dòng)腦思考動(dòng)手操作,才能促進(jìn)自己對(duì)知識(shí)的消化和理解,才能培養(yǎng)鍛煉自己的思維能力;同時(shí)也能檢驗(yàn)自己掌握的知識(shí)是否準(zhǔn)確,從而克服學(xué)習(xí)上的薄弱環(huán)節(jié),逐步形成扎實(shí)的基礎(chǔ)。 5、認(rèn)真更正錯(cuò)誤。作業(yè)經(jīng)老師批改后,要仔細(xì)看一遍,對(duì)于作業(yè)中出現(xiàn)的錯(cuò)誤,要認(rèn)真改正。要懂得,出錯(cuò)的地方,正是暴露自己的知識(shí)和能力弱點(diǎn)的地方。經(jīng)過(guò)更正,就可以及時(shí)彌補(bǔ)自己知識(shí)上的缺陷。 6、作業(yè)要規(guī)范。解題時(shí)不要輕易落筆,要在深思熟慮后一次寫成,切忌寫了又改,改了又擦,使作業(yè)涂改過(guò)多。書(shū)寫要工整,解題步驟既要簡(jiǎn)明、有條理,又要完整無(wú)缺。作業(yè)時(shí),各科都有各自的格式,要按照各學(xué)科的作業(yè)規(guī)范去做。 7、作業(yè)要保存好,定期將作業(yè)分門別類進(jìn)行整理,復(fù)習(xí)時(shí),可隨時(shí)拿來(lái)參考。 高中數(shù)學(xué)的上課建議 1、課前準(zhǔn)備好上課所需的課本、筆記本和其他文具,并抓緊時(shí)間簡(jiǎn)要回憶和復(fù)習(xí)上節(jié)課所學(xué)的內(nèi)容。 2、要帶著強(qiáng)烈的求知欲上課,希望在課上能向老師學(xué)到新知識(shí),解決新問(wèn)題。 3、上課時(shí)要集中精力聽(tīng)講,上課鈴一響,就應(yīng)立即進(jìn)入積極的學(xué)習(xí)狀態(tài),有意識(shí)地排除分散注意力的各種因素。 4、聽(tīng)課要抬頭,眼睛盯著老師的一舉一動(dòng),專心致志聆聽(tīng)老師的每一句話。要緊緊抓住老師的思路,注意老師敘述問(wèn)題的邏輯性,問(wèn)題是怎樣提出來(lái)的,以及分析問(wèn)題和解決問(wèn)題的方法步驟。 5、如果遇到某一個(gè)問(wèn)題或某個(gè)問(wèn)題的一個(gè)環(huán)節(jié)沒(méi)有聽(tīng)懂,不要在課堂上“鉆牛角尖”,而要先記下來(lái),接著往下聽(tīng)。不懂的問(wèn)題課后再去鉆研或向老師請(qǐng)教。 6、要努力當(dāng)課堂的主人。要認(rèn)真思考老師提出的每一個(gè)問(wèn)題,認(rèn)真觀察老師的每一個(gè)演示實(shí)驗(yàn),大膽舉手發(fā)表自己的看法,積極參加課堂討論。 7、要特別注意老師講課的開(kāi)頭和結(jié)尾。老師的“開(kāi)場(chǎng)白”往往是概括上節(jié)內(nèi)容,引出本節(jié)的新課題,并提出本節(jié)課的目的要求和要講述的中心問(wèn)題,起著承上起下的作用。老師的課后總結(jié),往往是一節(jié)課的精要提煉和復(fù)習(xí)提示,是本節(jié)課的高度概括和總結(jié)。 8、要養(yǎng)成記筆記的好習(xí)慣。好是一邊聽(tīng)一邊記,當(dāng)聽(tīng)與記發(fā)生矛盾時(shí),要以聽(tīng)為主,下課后再補(bǔ)上筆記。記筆記要有重點(diǎn),要把老師板書(shū)的知識(shí)提綱、補(bǔ)充的課外知識(shí)、典型題目的解題步驟和課堂上沒(méi)有聽(tīng)懂的問(wèn)題記下來(lái),供課后復(fù)習(xí)時(shí)參考。 學(xué)好高三數(shù)學(xué)的方法和技巧 1、建議多做真題,好做一個(gè)錯(cuò)題本; 2、做數(shù)學(xué)題對(duì)答案的時(shí)候不僅僅是對(duì)答案,更要看自己是怎么錯(cuò)的。高考之前,理解并且會(huì)做一道題目比做對(duì)一道題目更有用; 3、假如遇到不會(huì)的題目可以和你的授課老師交流,相信老師是愿意幫你的。 4、平時(shí)可以多做一些數(shù)學(xué)的模考試卷,原因是從中能夠?qū)W會(huì)合理控制時(shí)間,并且,能強(qiáng)化做題的思路和做題的速度和準(zhǔn)確度(這兩點(diǎn)通過(guò)多做試卷會(huì)有很好的提升)。 考點(diǎn)一:集合與簡(jiǎn)易邏輯 集合部分一般以選擇題出現(xiàn),屬容易題。重點(diǎn)考查集合間關(guān)系的理解和認(rèn)識(shí)。近年的試題加強(qiáng)了對(duì)集合計(jì)算化簡(jiǎn)能力的考查,并向無(wú)限集發(fā)展,考查抽象思維能力。在解決這些問(wèn)題時(shí),要注意利用幾何的直觀性,并注重集合表示方法的轉(zhuǎn)換與化簡(jiǎn)。簡(jiǎn)易邏輯考查有兩種形式:一是在選擇題和填空題中直接考查命題及其關(guān)系、邏輯聯(lián)結(jié)詞、“充要關(guān)系”、命題真?zhèn)蔚呐袛唷⑷Q命題和特稱命題的否定等,二是在解答題中深層次考查常用邏輯用語(yǔ)表達(dá)數(shù)學(xué)解題過(guò)程和邏輯推理。 考點(diǎn)二:函數(shù)與導(dǎo)數(shù) 函數(shù)是高考的重點(diǎn)內(nèi)容,以選擇題和填空題的為載體針對(duì)性考查函數(shù)的定義域與值域、函數(shù)的性質(zhì)、函數(shù)與方程、基本初等函數(shù)(一次和二次函數(shù)、指數(shù)、對(duì)數(shù)、冪函數(shù))的應(yīng)用等,分值約為10分,解答題與導(dǎo)數(shù)交匯在一起考查函數(shù)的性質(zhì)。導(dǎo)數(shù)部分一方面考查導(dǎo)數(shù)的運(yùn)算與導(dǎo)數(shù)的幾何意義,另一方面考查導(dǎo)數(shù)的簡(jiǎn)單應(yīng)用,如求函數(shù)的單調(diào)區(qū)間、極值與最值等,通常以客觀題的形式出現(xiàn),屬于容易題和中檔題,三是導(dǎo)數(shù)的綜合應(yīng)用,主要是和函數(shù)、不等式、方程等聯(lián)系在一起以解答題的形式出現(xiàn),如一些不等式恒成立問(wèn)題、參數(shù)的取值范圍問(wèn)題、方程根的個(gè)數(shù)問(wèn)題、不等式的證明等問(wèn)題。 考點(diǎn)三:三角函數(shù)與平面向量 一般是2道小題,1道綜合解答題。小題一道考查平面向量有關(guān)概念及運(yùn)算等,另一道對(duì)三角知識(shí)點(diǎn)的補(bǔ)充。大題中如果沒(méi)有涉及正弦定理、余弦定理的應(yīng)用,可能就是一道和解答題相互補(bǔ)充的三角函數(shù)的圖像、性質(zhì)或三角恒等變換的題目,也可能是考查平面向量為主的試題,要注意數(shù)形結(jié)合思想在解題中的應(yīng)用。向量重點(diǎn)考查平面向量數(shù)量積的概念及應(yīng)用,向量與直線、圓錐曲線、數(shù)列、不等式、三角函數(shù)等結(jié)合,解決角度、垂直、共線等問(wèn)題是“新熱點(diǎn)”題型。 考點(diǎn)四:數(shù)列與不等式 不等式主要考查一元二次不等式的解法、一元二次不等式組和簡(jiǎn)單線性規(guī)劃問(wèn)題、基本不等式的應(yīng)用等,通常會(huì)在小題中設(shè)置1到2道題。對(duì)不等式的工具性穿插在數(shù)列、解析幾何、函數(shù)導(dǎo)數(shù)等解答題中進(jìn)行考查。在選擇、填空題中考查等差或等比數(shù)列的概念、性質(zhì)、通項(xiàng)公式、求和公式等的靈活應(yīng)用,一道解答題大多凸顯以數(shù)列知識(shí)為工具,綜合運(yùn)用函數(shù)、方程、不等式等解決問(wèn)題的能力,它們都屬于中、高檔題目。 考點(diǎn)五:立體幾何與空間向量 一是考查空間幾何體的結(jié)構(gòu)特征、直觀圖與三視圖;二是考查空間點(diǎn)、線、面之間的位置關(guān)系;三是考查利用空間向量解決立體幾何問(wèn)題:利用空間向量證明線面平行與垂直、求空間角等(文科不要求)。在高考試卷中,一般有1~2個(gè)客觀題和一個(gè)解答題,多為中檔題。 考點(diǎn)六:解析幾何 一般有1~2個(gè)客觀題和1個(gè)解答題,其中客觀題主要考查直線斜率、直線方程、圓的方程、直線與圓的位置關(guān)系、圓錐曲線的定義應(yīng)用、標(biāo)準(zhǔn)方程的求解、離心率的計(jì)算等,解答題則主要考查直線與橢圓、拋物線等的位置關(guān)系問(wèn)題,經(jīng)常與平面向量、函數(shù)與不等式交匯,考查一些存在性問(wèn)題、證明問(wèn)題、定點(diǎn)與定值、最值與范圍問(wèn)題等。 考點(diǎn)七:算法復(fù)數(shù)推理與證明 高考對(duì)算法的.考查以選擇題或填空題的形式出現(xiàn),或給解答題披層“外衣”?疾榈臒狳c(diǎn)是流程圖的識(shí)別與算法語(yǔ)言的閱讀理解。算法與數(shù)列知識(shí)的網(wǎng)絡(luò)交匯命題是考查的主流。復(fù)數(shù)考查的重點(diǎn)是復(fù)數(shù)的有關(guān)概念、復(fù)數(shù)的代數(shù)形式、運(yùn)算及運(yùn)算的幾何意義,一般是選擇題、填空題,難度不大。推理證明部分命題的方向主要會(huì)在函數(shù)、三角、數(shù)列、立體幾何、解析幾何等方面,單獨(dú)出題的可能性較小。對(duì)于理科,數(shù)學(xué)歸納法可能作為解答題的一小問(wèn)。 高考數(shù)學(xué)試卷檢查注意事項(xiàng) 一、填空題 1、所有關(guān)于范圍或者解集,最好一律寫區(qū)間形式,以免你無(wú)暇顧及題目問(wèn)的到底是范圍還是區(qū)間,省事; 2、關(guān)于區(qū)間的開(kāi)閉點(diǎn)有空最好驗(yàn)算下,特別你找不到草稿又擔(dān)心自己抄錯(cuò); 3、所有角度最好寫成弧度制度,以確保萬(wàn)一你寫了個(gè)0到60度,0上面你有五成以上可能性忘記加個(gè)度(°); 4、審題要清,要逐字看清條件和設(shè)問(wèn)。比如,夾角還是夾角余弦值,余子式還是余子式的值,復(fù)數(shù)到底是寫數(shù)還是寫實(shí)部還是虛部還是模,傾斜角還是斜率;軌跡還是軌跡方程,直線AC還是平面AC;系數(shù)還是二項(xiàng)式系數(shù);最大值還是最小值; 5、做向量運(yùn)算要注意答案到底是0還是0向量; 6、等差等比數(shù)列算公差公比有兩解正負(fù)的,注意看有沒(méi)有“正數(shù)數(shù)列,遞增數(shù)列”一類的字眼; 7、解析幾何求直線方程,設(shè)了斜率要檢驗(yàn)斜率不存在的情況; 8、寫了解析式和軌跡方程要注意不要忘記定義域;同樣的三角類題型,不要忘記K∈Z,寫了用K的角更要看是不是題目給了范圍 9、解析幾何要看清焦點(diǎn)在什么地方的曲線; 10、數(shù)列求通項(xiàng)要看看需不需要分類,a1能不能合并; 11、實(shí)系數(shù)一元二次方程求系數(shù)要注意分虛實(shí),兩種情況; 12、不會(huì)的不要糾結(jié),填空要控制在35分鐘; 二、選擇題 1、沒(méi)有ABCD各一個(gè)的說(shuō)法,更沒(méi)有什么ABCD一定一個(gè)沒(méi)有一個(gè)有兩個(gè)的說(shuō)法,都是騙人的; 2、凡是英語(yǔ)選擇題的技巧,數(shù)學(xué)不適用,例如三短一長(zhǎng)啊,以上都不對(duì)必選之類; 3、注意賦值法、排除法在檢查選擇題時(shí)的運(yùn)用; (相關(guān)內(nèi)容可點(diǎn)擊閱讀高考數(shù)學(xué)選擇填空題十大解題技巧) 4、選擇控制在10分鐘以內(nèi); 三、解答題 1、函數(shù)判斷奇偶性前要先判斷定義域是否左右對(duì)稱,一分哦,R的話也要加一句判斷哦,單調(diào)性證明設(shè)的時(shí)候注意定義域,最值寫的時(shí)候沒(méi)最小值不要忘記寫無(wú)最小值! 2、基本不等式使用一正二定三相等切記切記,負(fù)的變號(hào),根據(jù)范圍判斷定植是否取得到; 3、復(fù)數(shù)設(shè)的時(shí)候注意a,b∈R不要漏; 4、寫定比分點(diǎn)公式切記不要寫成相除模式,向量沒(méi)有除法,屬于錯(cuò)誤表述; 5、解三角形用到sin值求角切記兩解,兩解切記檢驗(yàn); 6、解析幾何設(shè)了斜率檢驗(yàn)斜率不存在,中點(diǎn)弦問(wèn)題最后記得檢驗(yàn)判別式大于0; 7、應(yīng)用題注意一定要寫合理的定義域,上下限都要考慮,尤其圖形的應(yīng)用題,必有上下限; 8、圖像平移記得前面的負(fù)號(hào)系數(shù)要提出再平移; 9、數(shù)列大題太難第一問(wèn)做不出可以猜通項(xiàng),時(shí)間有多加個(gè)數(shù)學(xué)歸納法證明; 10、大題前三題控制在25~30分鐘 高考數(shù)學(xué)解答題注意事項(xiàng) 一、三角函數(shù)題 注意歸一公式、誘導(dǎo)公式的正確性(轉(zhuǎn)化成同名同角三角函數(shù)時(shí),套用歸一公式、誘導(dǎo)公式(奇變、偶不變;符號(hào)看象限)時(shí),很容易因?yàn)榇中,?dǎo)致錯(cuò)誤!一著不慎,滿盤皆輸!)。 二、數(shù)列題 1、證明一個(gè)數(shù)列是等差(等比)數(shù)列時(shí),最后下結(jié)論時(shí)要寫上以誰(shuí)為首項(xiàng),誰(shuí)為公差(公比)的等差(等比)數(shù)列; 2、最后一問(wèn)證明不等式成立時(shí),如果一端是常數(shù),另一端是含有n的式子時(shí),一般考慮用放縮法;如果兩端都是含n的式子,一般考慮數(shù)學(xué)歸納法(用數(shù)學(xué)歸納法時(shí),當(dāng)n=k+1時(shí),一定利用上n=k時(shí)的假設(shè),否則不正確。利用上假設(shè)后,如何把當(dāng)前的式子轉(zhuǎn)化到目標(biāo)式子,一般進(jìn)行適當(dāng)?shù)姆趴s,這一點(diǎn)是有難度的。簡(jiǎn)潔的方法是,用當(dāng)前的式子減去目標(biāo)式子,看符號(hào),得到目標(biāo)式子,下結(jié)論時(shí)一定寫上綜上:由①②得證; 3、證明不等式時(shí),有時(shí)構(gòu)造函數(shù),利用函數(shù)單調(diào)性很簡(jiǎn)單(所以要有構(gòu)造函數(shù)的意識(shí))。 三、立體幾何題 1、證明線面位置關(guān)系,一般不需要去建系,更簡(jiǎn)單; 2、求異面直線所成的角、線面角、二面角、存在性問(wèn)題、幾何體的高、表面積、體積等問(wèn)題時(shí),最好要建系; 3、注意向量所成的角的余弦值(范圍)與所求角的余弦值(范圍)的關(guān)系(符號(hào)問(wèn)題、鈍角、銳角問(wèn)題)。 四、概率問(wèn)題 1、搞清隨機(jī)試驗(yàn)包含的所有基本事件和所求事件包含的基本事件的個(gè)數(shù); 2、搞清是什么概率模型,套用哪個(gè)公式; 3、記準(zhǔn)均值、方差、標(biāo)準(zhǔn)差公式; 4、求概率時(shí),正難則反(根據(jù)p1+p2+...+pn=1); 5、注意計(jì)數(shù)時(shí)利用列舉、樹(shù)圖等基本方法; 6、注意放回抽樣,不放回抽樣; 7、注意“零散的”的知識(shí)點(diǎn)(莖葉圖,頻率分布直方圖、分層抽樣等)在大題中的滲透; 8、注意條件概率公式; 9、注意平均分組、不完全平均分組問(wèn)題。 五、圓錐曲線問(wèn)題 1、注意求軌跡方程時(shí),從三種曲線(橢圓、雙曲線、拋物線)著想,橢圓考得最多,方法上有直接法、定義法、交軌法、參數(shù)法、待定系數(shù)法; 2、注意直線的設(shè)法(法1分有斜率,沒(méi)斜率;法2設(shè)x=my+b(斜率不為零時(shí)),知道弦中點(diǎn)時(shí),往往用點(diǎn)差法);注意判別式;注意韋達(dá)定理;注意弦長(zhǎng)公式;注意自變量的取值范圍等等; 3、戰(zhàn)術(shù)上整體思路要保7分,爭(zhēng)9分,想12分。 六、導(dǎo)數(shù)、極值、最值、不等式恒成立(或逆用求參)問(wèn)題 1、先求函數(shù)的定義域,正確求出導(dǎo)數(shù),特別是復(fù)合函數(shù)的導(dǎo)數(shù),單調(diào)區(qū)間一般不能并,用“和”或“,”隔開(kāi)(知函數(shù)求單調(diào)區(qū)間,不帶等號(hào);知單調(diào)性,求參數(shù)范圍,帶等號(hào)); 2、注意最后一問(wèn)有應(yīng)用前面結(jié)論的'意識(shí); 3、注意分論討論的思想; 4、不等式問(wèn)題有構(gòu)造函數(shù)的意識(shí); 5、恒成立問(wèn)題(分離常數(shù)法、利用函數(shù)圖像與根的分布法、求函數(shù)最值法); 6、整體思路上保4分,爭(zhēng)8分,想12分。 高考數(shù)學(xué)考試解題注意事項(xiàng) 1.審題與解題的關(guān)系 很多人對(duì)審題重視不夠,匆匆一看急于下筆,以致題目的條件與要求都沒(méi)有吃透,至于如何從題目中挖掘隱含條件、啟發(fā)解題思路就更無(wú)從談起,這樣解題出錯(cuò)自然多。只有耐心仔細(xì)地審題,準(zhǔn)確地把握題目中的關(guān)鍵詞與量。如“至少”,“a>0”,自變量的取值范圍等等,從中獲取盡可能多的信息,才能迅速找準(zhǔn)解題方向。 2.“會(huì)做”與“得分”的關(guān)系 要將你的解題策略轉(zhuǎn)化為得分點(diǎn),主要靠準(zhǔn)確完整的數(shù)學(xué)語(yǔ)言表述,這一點(diǎn)往往被很多人所忽視,因此卷面上大量出現(xiàn)“會(huì)而不對(duì)”“對(duì)而不全”的情況,自己的估分與實(shí)際得分差之甚遠(yuǎn)。如立體幾何論證中的“跳步”,使很多人丟失1/3以上得分,代數(shù)論證中“以圖代證”,盡管解題思路正確甚至很巧妙,但是由于不善于把“圖形語(yǔ)言”準(zhǔn)確地轉(zhuǎn)譯為“文字語(yǔ)言”,得分少得可憐。 3.快與準(zhǔn)的關(guān)系 只有“準(zhǔn)”才能得分,只有“準(zhǔn)”你才可不必考慮再花時(shí)間檢查,而“快”是平時(shí)訓(xùn)練的結(jié)果,不是考場(chǎng)上所能解決的問(wèn)題,一味求快,只會(huì)落得錯(cuò)誤百出。如去年第21題應(yīng)用題,此題列出分段函數(shù)解析式并不難,但是相當(dāng)多的人在匆忙中把二次函數(shù)甚至一次函數(shù)都算錯(cuò),盡管后繼部分解題思路正確又花時(shí)間去算,也幾乎得不到分,這與我們的實(shí)際水平是不相符的。適當(dāng)?shù)芈稽c(diǎn)、準(zhǔn)一點(diǎn),可得多一點(diǎn)分;相反,快一點(diǎn),錯(cuò)一片,花了時(shí)間還得不到分。 4.難題與容易題的關(guān)系 拿到試卷后,應(yīng)將全卷通覽一遍,一般來(lái)說(shuō)應(yīng)按先易后難、先簡(jiǎn)后繁的順序作答。近年來(lái)考題的順序并不完全是難易的順序,因此在答題時(shí)要合理安排時(shí)間,不要在某個(gè)卡住的題上打“持久戰(zhàn)”,那樣既耗費(fèi)時(shí)間又拿不到分,會(huì)做的題又被耽誤了。這幾年,數(shù)學(xué)試題已從“一題把關(guān)”轉(zhuǎn)為“多題把關(guān)”,因此解答題都設(shè)置了層次分明的“臺(tái)階”,入口寬,入手易,但是深入難,解到底難,因此看似容易的題也會(huì)有“咬手”的關(guān)卡,看似難做的題也有可得分之處。所以考試中看到“容易”題不可掉以輕心,看到難題不要膽怯,冷靜思考、仔細(xì)分析,定能得到應(yīng)有的分?jǐn)?shù)。 三角函數(shù)。 注意歸一公式、誘導(dǎo)公式的正確性。 數(shù)列題。 1、證明一個(gè)數(shù)列是等差(等比)數(shù)列時(shí),最后下結(jié)論時(shí)要寫上以誰(shuí)為首項(xiàng),誰(shuí)為公差(公比)的等差(等比)數(shù)列; 2、最后一問(wèn)證明不等式成立時(shí),如果一端是常數(shù),另一端是含有n的式子時(shí),一般考慮用放縮法;如果兩端都是含n的式子,一般考慮數(shù)學(xué)歸納法(用數(shù)學(xué)歸納法時(shí),當(dāng)n=k+1時(shí),一定利用上n=k時(shí)的假設(shè),否則不正確。利用上假設(shè)后,如何把當(dāng)前的式子轉(zhuǎn)化到目標(biāo)式子,一般進(jìn)行適當(dāng)?shù)姆趴s,這一點(diǎn)是有難度的。簡(jiǎn)潔的方法是,用當(dāng)前的式子減去目標(biāo)式子,看符號(hào),得到目標(biāo)式子,下結(jié)論時(shí)一定寫上綜上:由①②得證; 3、證明不等式時(shí),有時(shí)構(gòu)造函數(shù),利用函數(shù)單調(diào)性很簡(jiǎn)單 立體幾何題。 1、證明線面位置關(guān)系,一般不需要去建系,更簡(jiǎn)單; 2、求異面直線所成的角、線面角、二面角、存在性問(wèn)題、幾何體的高、表面積、體積等問(wèn)題時(shí),要建系; 3、注意向量所成的角的余弦值(范圍)與所求角的余弦值(范圍)的關(guān)系。 概率問(wèn)題。 1、搞清隨機(jī)試驗(yàn)包含的所有基本事件和所求事件包含的基本事件的個(gè)數(shù); 2、搞清是什么概率模型,套用哪個(gè)公式; 3、記準(zhǔn)均值、方差、標(biāo)準(zhǔn)差公式; 4、求概率時(shí),正難則反(根據(jù)p1+p2+……+pn=1); 5、注意計(jì)數(shù)時(shí)利用列舉、樹(shù)圖等基本方法; 6、注意放回抽樣,不放回抽樣; 正弦、余弦典型例題。 1、在△ABC中,∠C=90°,a=1,c=4,則sinA的`值為 2、已知α為銳角,且,則α的度數(shù)是()A、30°B、45°C、60°D、90° 3、在△ABC中,若,∠A,∠B為銳角,則∠C的度數(shù)是()A、75°B、90°C、105°D、120° 4、若∠A為銳角,且,則A=()A、15°B、30°C、45°D、60° 5、在△ABC中,AB=AC=2,AD⊥BC,垂足為D,且AD=,E是AC中點(diǎn),EF⊥BC,垂足為F,求sin∠EBF的值。 正弦、余弦解題訣竅。 1、已知兩角及一邊,或兩邊及一邊的對(duì)角(對(duì)三角形是否存在要討論)用正弦定理。 2、已知三邊,或兩邊及其夾角用余弦定理 3、余弦定理對(duì)于確定三角形形狀非常有用,只需要知道角的余弦值為正,為負(fù),還是為零,就可以確定是鈍角。直角還是銳角。 1、課程內(nèi)容: 必修課程由5個(gè)模塊組成: 必修1:集合、函數(shù)概念與基本初等函數(shù)(指、對(duì)、冪函數(shù)) 必修2:立體幾何初步、平面解析幾何初步。 必修3:算法初步、統(tǒng)計(jì)、概率。 必修4:基本初等函數(shù)(三角函數(shù))、平面向量、三角恒等變換。 必修5:解三角形、數(shù)列、不等式。 以上是每一個(gè)高中學(xué)生所必須學(xué)習(xí)的。 上述內(nèi)容覆蓋了高中階段傳統(tǒng)的數(shù)學(xué)基礎(chǔ)知識(shí)和基本技能的主要部分,其中包括集合、函數(shù)、數(shù)列、不等式、解三角形、立體幾何初步、平面解析幾何初步等。不同的是在保證打好基礎(chǔ)的同時(shí),進(jìn)一步強(qiáng)調(diào)了這些知識(shí)的發(fā)生、發(fā)展過(guò)程和實(shí)際應(yīng)用,而不在技巧與難度上做過(guò)高的要求。 此外,基礎(chǔ)內(nèi)容還增加了向量、算法、概率、統(tǒng)計(jì)等內(nèi)容。 2、重難點(diǎn)及考點(diǎn): 重點(diǎn):函數(shù),數(shù)列,三角函數(shù),平面向量,圓錐曲線,立體幾何,導(dǎo)數(shù) 難點(diǎn):函數(shù)、圓錐曲線 高考相關(guān)考點(diǎn): 、偶吓c簡(jiǎn)易邏輯:集合的概念與運(yùn)算、簡(jiǎn)易邏輯、充要條件 ⑵函數(shù):映射與函數(shù)、函數(shù)解析式與定義域、值域與最值、反函數(shù)、三大性質(zhì)、函數(shù)圖象、指數(shù)與指數(shù)函數(shù)、對(duì)數(shù)與對(duì)數(shù)函數(shù)、函數(shù)的應(yīng)用 ⑶數(shù)列:數(shù)列的有關(guān)概念、等差數(shù)列、等比數(shù)列、數(shù)列求和、數(shù)列的.應(yīng)用 、热呛瘮(shù):有關(guān)概念、同角關(guān)系與誘導(dǎo)公式、和、差、倍、半公式、求值、化簡(jiǎn)、證明、三角函數(shù)的圖象與性質(zhì)、三角函數(shù)的應(yīng)用 ⑸平面向量:有關(guān)概念與初等運(yùn)算、坐標(biāo)運(yùn)算、數(shù)量積及其應(yīng)用 、什坏仁剑焊拍钆c性質(zhì)、均值不等式、不等式的證明、不等式的解法、絕對(duì)值不等式、不等式的應(yīng)用 、酥本和圓的方程:直線的方程、兩直線的位置關(guān)系、線性規(guī)劃、圓、直線與圓的位置關(guān)系 、虉A錐曲線方程:橢圓、雙曲線、拋物線、直線與圓錐曲線的位置關(guān)系、軌跡問(wèn)題、圓錐曲線的應(yīng)用 、椭本、平面、簡(jiǎn)單幾何體:空間直線、直線與平面、平面與平面、棱柱、棱錐、球、空間向量 ⑽排列、組合和概率:排列、組合應(yīng)用題、二項(xiàng)式定理及其應(yīng)用 、细怕逝c統(tǒng)計(jì):概率、分布列、期望、方差、抽樣、正態(tài)分布 ⑿導(dǎo)數(shù):導(dǎo)數(shù)的概念、求導(dǎo)、導(dǎo)數(shù)的應(yīng)用 、褟(fù)數(shù):復(fù)數(shù)的概念與運(yùn)算 1.數(shù)列的定義 按一定次序排列的一列數(shù)叫做數(shù)列,數(shù)列中的每一個(gè)數(shù)都叫做數(shù)列的項(xiàng). (1)從數(shù)列定義可以看出,數(shù)列的數(shù)是按一定次序排列的,如果組成數(shù)列的數(shù)相同而排列次序不同,那么它們就不是同一數(shù)列,例如數(shù)列1,2,3,4,5與數(shù)列5,4,3,2,1是不同的數(shù)列. (2)在數(shù)列的定義中并沒(méi)有規(guī)定數(shù)列中的數(shù)必須不同,因此,在同一數(shù)列中可以出現(xiàn)多個(gè)相同的數(shù)字,如:-1的1次冪,2次冪,3次冪,4次冪,…構(gòu)成數(shù)列:-1,1,-1,1,…. (4)數(shù)列的項(xiàng)與它的項(xiàng)數(shù)是不同的,數(shù)列的項(xiàng)是指這個(gè)數(shù)列中的某一個(gè)確定的數(shù),是一個(gè)函數(shù)值,也就是相當(dāng)于f(n),而項(xiàng)數(shù)是指這個(gè)數(shù)在數(shù)列中的位置序號(hào),它是自變量的值,相當(dāng)于f(n)中的n. (5)次序?qū)τ跀?shù)列來(lái)講是十分重要的,有幾個(gè)相同的數(shù),由于它們的排列次序不同,構(gòu)成的數(shù)列就不是一個(gè)相同的數(shù)列,顯然數(shù)列與數(shù)集有本質(zhì)的區(qū)別.如:2,3,4,5,6這5個(gè)數(shù)按不同的次序排列時(shí),就會(huì)得到不同的數(shù)列,而{2,3,4,5,6}中元素不論按怎樣的次序排列都是同一個(gè)集合. 2.數(shù)列的分類 (1)根據(jù)數(shù)列的項(xiàng)數(shù)多少可以對(duì)數(shù)列進(jìn)行分類,分為有窮數(shù)列和無(wú)窮數(shù)列.在寫數(shù)列時(shí),對(duì)于有窮數(shù)列,要把末項(xiàng)寫出,例如數(shù)列1,3,5,7,9,…,2n-1表示有窮數(shù)列,如果把數(shù)列寫成1,3,5,7,9,…或1,3,5,7,9,…,2n-1,…,它就表示無(wú)窮數(shù)列. (2)按照項(xiàng)與項(xiàng)之間的大小關(guān)系或數(shù)列的增減性可以分為以下幾類:遞增數(shù)列、遞減數(shù)列、擺動(dòng)數(shù)列、常數(shù)列. 3.數(shù)列的通項(xiàng)公式 數(shù)列是按一定次序排列的一列數(shù),其內(nèi)涵的本質(zhì)屬性是確定這一列數(shù)的`規(guī)律,這個(gè)規(guī)律通常是用式子f(n)來(lái)表示的, 這兩個(gè)通項(xiàng)公式形式上雖然不同,但表示同一個(gè)數(shù)列,正像每個(gè)函數(shù)關(guān)系不都能用解析式表達(dá)出來(lái)一樣,也不是每個(gè)數(shù)列都能寫出它的通項(xiàng)公式;有的數(shù)列雖然有通項(xiàng)公式,但在形式上,又不一定是的,僅僅知道一個(gè)數(shù)列前面的有限項(xiàng),無(wú)其他說(shuō)明,數(shù)列是不能確定的,通項(xiàng)公式更非.如:數(shù)列1,2,3,4,…, 由公式寫出的后續(xù)項(xiàng)就不一樣了,因此,通項(xiàng)公式的歸納不僅要看它的前幾項(xiàng),更要依據(jù)數(shù)列的構(gòu)成規(guī)律,多觀察分析,真正找到數(shù)列的內(nèi)在規(guī)律,由數(shù)列前幾項(xiàng)寫出其通項(xiàng)公式,沒(méi)有通用的方法可循. 再?gòu)?qiáng)調(diào)對(duì)于數(shù)列通項(xiàng)公式的理解注意以下幾點(diǎn): (1)數(shù)列的通項(xiàng)公式實(shí)際上是一個(gè)以正整數(shù)集N.或它的有限子集{1,2,…,n}為定義域的函數(shù)的表達(dá)式. (2)如果知道了數(shù)列的通項(xiàng)公式,那么依次用1,2,3,…去替代公式中的n就可以求出這個(gè)數(shù)列的各項(xiàng);同時(shí),用數(shù)列的通項(xiàng)公式也可判斷某數(shù)是否是某數(shù)列中的一項(xiàng),如果是的話,是第幾項(xiàng). (3)如所有的函數(shù)關(guān)系不一定都有解析式一樣,并不是所有的數(shù)列都有通項(xiàng)公式. 如2的不足近似值,精確到1,0.1,0.01,0.001,0.0001,…所構(gòu)成的數(shù)列1,1.4,1.41,1.414,1.4142,…就沒(méi)有通項(xiàng)公式. (4)有的數(shù)列的通項(xiàng)公式,形式上不一定是的,正如舉例中的: (5)有些數(shù)列,只給出它的前幾項(xiàng),并沒(méi)有給出它的構(gòu)成規(guī)律,那么僅由前面幾項(xiàng)歸納出的數(shù)列通項(xiàng)公式并不. 高三數(shù)學(xué)知識(shí)點(diǎn)之導(dǎo)數(shù)公式 1.y=c(c為常數(shù)) y'=0 2.y=x^n y'=nx^(n-1) 3.y=a^x y'=a^xlna y=e^x y'=e^x 4.y=logax y'=logae/x y=lnx y'=1/x 5.y=sinx y'=cosx 6.y=cosx y'=-sinx 7.y=tanx y'=1/cos^2x 8.y=cotx y'=-1/sin^2x 9.y=arcsinx y'=1/√1-x^2 10.y=arccosx y'=-1/√1-x^2 11.y=arctanx y'=1/1+x^2 12.y=arccotx y'=-1/1+x^2 三角函數(shù)公式 銳角三角函數(shù)公式 sin α=∠α的對(duì)邊 / 斜邊 cos α=∠α的鄰邊 / 斜邊 tan α=∠α的對(duì)邊 / ∠α的鄰邊 cot α=∠α的`鄰邊 / ∠α的對(duì)邊 倍角公式 Sin2A=2SinA?CosA Cos2A=CosA^2-SinA^2=1-2SinA^2=2CosA^2-1 tan2A=(2tanA)/(1-tanA^2) (注:SinA^2 是sinA的平方 sin2(A) ) 三倍角公式 sin3α=4sinα·sin(π/3+α)sin(π/3-α) cos3α=4cosα·cos(π/3+α)cos(π/3-α) tan3a = tan a · tan(π/3+a)· tan(π/3-a) 三倍角公式推導(dǎo) sin3a =sin(2a+a) =sin2acosa+cos2asina 輔助角公式 Asinα+Bcosα=(A^2+B^2)^(1/2)sin(α+t),其中 sint=B/(A^2+B^2)^(1/2) cost=A/(A^2+B^2)^(1/2) tant=B/A Asinα+Bcosα=(A^2+B^2)^(1/2)cos(α-t),tant=A/B 降冪公式 sin^2(α)=(1-cos(2α))/2=versin(2α)/2 cos^2(α)=(1+cos(2α))/2=covers(2α)/2 tan^2(α)=(1-cos(2α))/(1+cos(2α)) 推導(dǎo)公式 tanα+cotα=2/sin2α tanα-cotα=-2cot2α 1+cos2α=2cos^2α 1-cos2α=2sin^2α 1+sinα=(sinα/2+cosα/2)^2 =2sina(1-sin2a)+(1-2sin2a)sina =3sina-4sin3a cos3a =cos(2a+a) =cos2acosa-sin2asina =(2cos2a-1)cosa-2(1-sin2a)cosa =4cos3a-3cosa sin3a=3sina-4sin3a =4sina(3/4-sin2a) =4sina[(√3/2)2-sin2a] =4sina(sin260°-sin2a) =4sina(sin60°+sina)(sin60°-sina) =4sina.2sin[(60+a)/2]cos[(60°-a)/2].2sin[(60°-a)/2]cos[(60°-a)/2] =4sinasin(60°+a)sin(60°-a) cos3a=4cos3a-3cosa =4cosa(cos2a-3/4) =4cosa[cos2a-(√3/2)2] =4cosa(cos2a-cos230°) =4cosa(cosa+cos30°)(cosa-cos30°) =4cosa.2cos[(a+30°)/2]cos[(a-30°)/2].{-2sin[(a+30°)/2]sin[(a-30°)/2]} =-4cosasin(a+30°)sin(a-30°) =-4cosasin[90°-(60°-a)]sin[-90°+(60°+a)] =-4cosacos(60°-a)[-cos(60°+a)] =4cosacos(60°-a)cos(60°+a) 上述兩式相比可得 tan3a=tanatan(60°-a)tan(60°+a) 數(shù)學(xué)圓錐公式知識(shí)點(diǎn) 正弦定理a/sinA=b/sinB=c/sinC=2R注:其中R表示三角形的外接圓半徑 余弦定理b2=a2+c2-2accosB注:角B是邊a和邊c的夾角 圓的標(biāo)準(zhǔn)方程(x-a)2+(y-b)2=r2注:(a,b)是圓心坐標(biāo) 圓的一般方程x2+y2+Dx+Ey+F=0注:D2+E2-4F>0 拋物線標(biāo)準(zhǔn)方程y2=2pxy2=-2px-x2=2pyx2=-2py 直棱柱側(cè)面積S=c.h斜棱柱側(cè)面積S=c'.h 正棱錐側(cè)面積S=1/2c.h'正棱臺(tái)側(cè)面積S=1/2(c+c')h' 圓臺(tái)側(cè)面積S=1/2(c+c')l=pi(R+r)l球的表面積S=4pi.r2 圓柱側(cè)面積S=c.h=2pi.h圓錐側(cè)面積S=1/2.c.l=pi.r.l 弧長(zhǎng)公式l=a.ra是圓心角的弧度數(shù)r>0扇形面積公式s=1/2.l.r 錐體體積公式V=1/3.S.H圓錐體體積公式V=1/3.pi.r2h 斜棱柱體積V=S'L注:其中,S'是直截面面積,L是側(cè)棱長(zhǎng) 柱體體積公式V=s.h圓柱體V=p.r2h 乘法與因式分a2-b2=(a+b)(a-b)a3+b3=(a+b)(a2-ab+b2)a3-b3=(a-b(a2+ab+b2) 三角不等式|a+b|≤|a|+|b||a-b|≤|a|+|b||a|≤b<=>-b≤a≤b 三角函數(shù)的單調(diào)性判斷致誤 對(duì)于函數(shù)y=Asin(ωx+φ)的單調(diào)性,當(dāng)ω>0時(shí),由于內(nèi)層函數(shù)u=ωx+φ是單調(diào)遞增的,所以該函數(shù)的單調(diào)性和y=sin x的單調(diào)性相同,故可完全按照函數(shù)y=sin x的單調(diào)區(qū)間解決;但當(dāng)ω<0時(shí),內(nèi)層函數(shù)u=ωx+φ是單調(diào)遞減的,此時(shí)該函數(shù)的單調(diào)性和函數(shù)y=sinx的單調(diào)性相反,就不能再按照函數(shù)y=sinx的單調(diào)性解決,一般是根據(jù)三角函數(shù)的奇偶性將內(nèi)層函數(shù)的系數(shù)變?yōu)檎龜?shù)后再加以解決。對(duì)于帶有絕對(duì)值的三角函數(shù)應(yīng)該根據(jù)圖像,從直觀上進(jìn)行判斷。 忽視零向量致誤 零向量是向量中最特殊的向量,規(guī)定零向量的長(zhǎng)度為0,其方向是任意的,零向量與任意向量都共線。它在向量中的位置正如實(shí)數(shù)中0的位置一樣,但有了它容易引起一些混淆,稍微考慮不到就會(huì)出錯(cuò),考生應(yīng)給予足夠的重視。 向量夾角范圍不清致誤 解題時(shí)要全面考慮問(wèn)題。數(shù)學(xué)試題中往往隱含著一些容易被考生所忽視的因素,能不能在解題時(shí)把這些因素考慮到,是解題成功的關(guān)鍵,如當(dāng)a·b<0時(shí),a與b的夾角不一定為鈍角,要注意θ=π的情況。 an與Sn關(guān)系不清致誤 在數(shù)列問(wèn)題中,數(shù)列的通項(xiàng)an與其前n項(xiàng)和Sn之間存在下列關(guān)系:an=S1,n=1,Sn-Sn-1,n≥2。這個(gè)關(guān)系對(duì)任意數(shù)列都是成立的,但要注意的是這個(gè)關(guān)系式是分段的,在n=1和n≥2時(shí)這個(gè)關(guān)系式具有完全不同的表現(xiàn)形式,這也是解題中經(jīng)常出錯(cuò)的一個(gè)地方,在使用這個(gè)關(guān)系式時(shí)要牢牢記住其“分段”的特點(diǎn)。 對(duì)數(shù)列的定義、性質(zhì)理解錯(cuò)誤 等差數(shù)列的前n項(xiàng)和在公差不為零時(shí)是關(guān)于n的常數(shù)項(xiàng)為零的二次函數(shù);一般地,有結(jié)論“若數(shù)列{an}的前n項(xiàng)和Sn=an2+bn+c(a,b,c∈R),則數(shù)列{an}為等差數(shù)列的充要條件是c=0”;在等差數(shù)列中,Sm,S2m-Sm,S3m-S2m(m∈Nx)是等差數(shù)列。 數(shù)列中的最值錯(cuò)誤 數(shù)列問(wèn)題中其通項(xiàng)公式、前n項(xiàng)和公式都是關(guān)于正整數(shù)n的函數(shù),要善于從函數(shù)的觀點(diǎn)認(rèn)識(shí)和理解數(shù)列問(wèn)題。數(shù)列的通項(xiàng)an與前n項(xiàng)和Sn的關(guān)系是高考的命題重點(diǎn),解題時(shí)要注意把n=1和n≥2分開(kāi)討論,再看能不能統(tǒng)一。在關(guān)于正整數(shù)n的二次函數(shù)中其取最值的點(diǎn)要根據(jù)正整數(shù)距離二次函數(shù)的對(duì)稱軸的遠(yuǎn)近而定。 錯(cuò)位相減求和項(xiàng)處理不當(dāng)致誤 錯(cuò)位相減求和法的適用條件:數(shù)列是由一個(gè)等差數(shù)列和一個(gè)等比數(shù)列對(duì)應(yīng)項(xiàng)的乘積所組成的,求其前n項(xiàng)和;痉椒ㄊ窃O(shè)這個(gè)和式為Sn,在這個(gè)和式兩端同時(shí)乘以等比數(shù)列的公比得到另一個(gè)和式,這兩個(gè)和式錯(cuò)一位相減,就把問(wèn)題轉(zhuǎn)化為以求一個(gè)等比數(shù)列的前n項(xiàng)和或前n-1項(xiàng)和為主的求和問(wèn)題.這里最容易出現(xiàn)問(wèn)題的就是錯(cuò)位相減后對(duì)剩余項(xiàng)的處理。 不等式性質(zhì)應(yīng)用不當(dāng)致誤 在使用不等式的基本性質(zhì)進(jìn)行推理論證時(shí)一定要準(zhǔn)確,特別是不等式兩端同時(shí)乘以或同時(shí)除以一個(gè)數(shù)式、兩個(gè)不等式相乘、一個(gè)不等式兩端同時(shí)n次方時(shí),一定要注意使其能夠這樣做的條件,如果忽視了不等式性質(zhì)成立的前提條件就會(huì)出現(xiàn)錯(cuò)誤。 忽視基本不等式應(yīng)用條件致誤 利用基本不等式a+b≥2ab以及變式ab≤a+b22等求函數(shù)的最值時(shí),務(wù)必注意a,b為正數(shù)(或a,b非負(fù)),ab或a+b其中之一應(yīng)是定值,特別要注意等號(hào)成立的條件。對(duì)形如y=ax+bx(a,b>0)的函數(shù),在應(yīng)用基本不等式求函數(shù)最值時(shí),一定要注意ax,bx的'符號(hào),必要時(shí)要進(jìn)行分類討論,另外要注意自變量x的取值范圍,在此范圍內(nèi)等號(hào)能否取到。 符合一定條件的動(dòng)點(diǎn)所形成的圖形,或者說(shuō),符合一定條件的點(diǎn)的全體所組成的集合,叫做滿足該條件的點(diǎn)的軌跡。 軌跡,包含兩個(gè)方面的問(wèn)題:凡在軌跡上的點(diǎn)都符合給定的條件,這叫做軌跡的純粹性(也叫做必要性);凡不在軌跡上的點(diǎn)都不符合給定的條件,也就是符合給定條件的點(diǎn)必在軌跡上,這叫做軌跡的完備性(也叫做充分性)。 【軌跡方程】就是與幾何軌跡對(duì)應(yīng)的代數(shù)描述。 一、求動(dòng)點(diǎn)的軌跡方程的基本步驟 1、建立適當(dāng)?shù)淖鴺?biāo)系,設(shè)出動(dòng)點(diǎn)M的坐標(biāo); 2、寫出點(diǎn)M的集合; 3、列出方程=0; 4、化簡(jiǎn)方程為最簡(jiǎn)形式; 5、檢驗(yàn)。 二、求動(dòng)點(diǎn)的軌跡方程的常用方法:求軌跡方程的'方法有多種,常用的有直譯法、定義法、相關(guān)點(diǎn)法、參數(shù)法和交軌法等。 1、直譯法:直接將條件翻譯成等式,整理化簡(jiǎn)后即得動(dòng)點(diǎn)的軌跡方程,這種求軌跡方程的方法通常叫做直譯法。 2、定義法:如果能夠確定動(dòng)點(diǎn)的軌跡滿足某種已知曲線的定義,則可利用曲線的定義寫出方程,這種求軌跡方程的方法叫做定義法。 3、相關(guān)點(diǎn)法:用動(dòng)點(diǎn)Q的坐標(biāo)x,y表示相關(guān)點(diǎn)P的坐標(biāo)x0、y0,然后代入點(diǎn)P的坐標(biāo)(x0,y0)所滿足的曲線方程,整理化簡(jiǎn)便得到動(dòng)點(diǎn)Q軌跡方程,這種求軌跡方程的方法叫做相關(guān)點(diǎn)法。 4、參數(shù)法:當(dāng)動(dòng)點(diǎn)坐標(biāo)x、y之間的直接關(guān)系難以找到時(shí),往往先尋找x、y與某一變數(shù)t的關(guān)系,得再消去參變數(shù)t,得到方程,即為動(dòng)點(diǎn)的軌跡方程,這種求軌跡方程的方法叫做參數(shù)法。 5、交軌法:將兩動(dòng)曲線方程中的參數(shù)消去,得到不含參數(shù)的方程,即為兩動(dòng)曲線交點(diǎn)的軌跡方程,這種求軌跡方程的方法叫做交軌法。 直譯法:求動(dòng)點(diǎn)軌跡方程的一般步驟 、俳ㄏ怠⑦m當(dāng)?shù)淖鴺?biāo)系; ②設(shè)點(diǎn)——設(shè)軌跡上的任一點(diǎn)P(x,y); ③列式——列出動(dòng)點(diǎn)p所滿足的關(guān)系式; 、艽鷵Q——依條件的特點(diǎn),選用距離公式、斜率公式等將其轉(zhuǎn)化為關(guān)于X,Y的方程式,并化簡(jiǎn); 、葑C明——證明所求方程即為符合條件的動(dòng)點(diǎn)軌跡方程。 第一:高考數(shù)學(xué)中有函數(shù)、數(shù)列、三角函數(shù)、平面向量、不等式、立體幾何等九大章節(jié)。 主要是考函數(shù)和導(dǎo)數(shù),這是我們整個(gè)高中階段里最核心的板塊,在這個(gè)板塊里,重點(diǎn)考察兩個(gè)方面:第一個(gè)函數(shù)的性質(zhì),包括函數(shù)的單調(diào)性、奇偶性;第二是函數(shù)的解答題,重點(diǎn)考察的是二次函數(shù)和高次函數(shù),分函數(shù)和它的一些分布問(wèn)題,但是這個(gè)分布重點(diǎn)還包含兩個(gè)分析就是二次方程的分布的.問(wèn)題,這是第一個(gè)板塊。 第二:平面向量和三角函數(shù)。 重點(diǎn)考察三個(gè)方面:一個(gè)是劃減與求值,第一,重點(diǎn)掌握公式,重點(diǎn)掌握五組基本公式。第二,是三角函數(shù)的圖像和性質(zhì),這里重點(diǎn)掌握正弦函數(shù)和余弦函數(shù)的性質(zhì),第三,正弦定理和余弦定理來(lái)解三角形。難度比較小。 第三:數(shù)列。 數(shù)列這個(gè)板塊,重點(diǎn)考兩個(gè)方面:一個(gè)通項(xiàng);一個(gè)是求和。 第四:空間向量和立體幾何。 在里面重點(diǎn)考察兩個(gè)方面:一個(gè)是證明;一個(gè)是計(jì)算。 第五:概率和統(tǒng)計(jì)。 這一板塊主要是屬于數(shù)學(xué)應(yīng)用問(wèn)題的范疇,當(dāng)然應(yīng)該掌握下面幾個(gè)方面,第一……等可能的概率,第二……事件,第三是獨(dú)立事件,還有獨(dú)立重復(fù)事件發(fā)生的概率。 第六:解析幾何。 這是我們比較頭疼的問(wèn)題,是整個(gè)試卷里難度比較大,計(jì)算量的題,當(dāng)然這一類題,我總結(jié)下面五類?嫉'題型,包括第一類所講的直線和曲線的位置關(guān)系,這是考試最多的內(nèi)容?忌鷳(yīng)該掌握它的通法,第二類我們所講的動(dòng)點(diǎn)問(wèn)題,第三類是弦長(zhǎng)問(wèn)題,第四類是對(duì)稱問(wèn)題,這也是20xx年高考已經(jīng)考過(guò)的一點(diǎn),第五類重點(diǎn)問(wèn)題,這類題時(shí)往往覺(jué)得有思路,但是沒(méi)有答案,當(dāng)然這里我相等的是,這道題盡管計(jì)算量很大,但是造成計(jì)算量大的原因,往往有這個(gè)原因,我們所選方法不是很恰當(dāng),因此,在這一章里我們要掌握比較好的算法,來(lái)提高我們做題的準(zhǔn)確度,這是我們所講的第六大板塊。 第七:押軸題。 考生在備考復(fù)習(xí)時(shí),應(yīng)該重點(diǎn)不等式計(jì)算的方法,雖然說(shuō)難度比較大,我建議考生,采取分部得分整個(gè)試卷不要留空白。這是高考所考的七大板塊核心的考點(diǎn)。 第一部分代數(shù) (一)集合和簡(jiǎn)易邏輯 1、解集合的意義及其表示方法,了解空集、全集、子集、交集、并集、補(bǔ)集的概念及其表示方法,了解符號(hào)各種跟集合相關(guān)的符號(hào)含義,并能運(yùn)用這些符號(hào)表示集合與集合、元素與集合的關(guān)系。 2、了解充分條件、必要條件、充分必要條件的概念。 (二)函數(shù) 1、了解函數(shù)概念,會(huì)求一些常見(jiàn)函數(shù)的定義域。 2、了解函數(shù)的單調(diào)性和奇偶性的概念,會(huì)判斷一些常見(jiàn)函數(shù)的單調(diào)性和奇偶性。 3、理解一次函數(shù)、反比例函數(shù)的概念,掌握它們的圖像和性質(zhì),會(huì)求它們的解析式。 4、理解二次函數(shù)的概念,掌握它的圖象和性質(zhì)以及函數(shù)y=ax?+bx+c(a≠0)與y=ax?(a≠0)的圖象間的關(guān)系;會(huì)求二次函數(shù)的解析式及最大值或最小值,能運(yùn)用二次函數(shù)的知識(shí)解決有關(guān)問(wèn)題。 5、理解分?jǐn)?shù)指數(shù)冪的概念,掌握有理指數(shù)冪的運(yùn)算性質(zhì),掌握指數(shù)函數(shù)的概念、圖象和性質(zhì)。 6、理解對(duì)數(shù)的概念,掌握對(duì)數(shù)的運(yùn)算性質(zhì),掌握對(duì)數(shù)函數(shù)的概念、圖象和性質(zhì)。 (三)不等式和不等式組 1、了解不等式的性質(zhì),會(huì)解一元一次不等式、一元一次不等式組各可化為一元一次不等式組的不等式,會(huì)解一元二次不等式。會(huì)表示不等式或不等式組的解集。 2、會(huì)解形如1ax+b1≥c和1ax+b1≤c的絕對(duì)值不等式。 (四)數(shù)列 1、了解數(shù)列及其通項(xiàng)、前n項(xiàng)和的概念。 2、理解等差數(shù)列、等差中項(xiàng)的概念,會(huì)靈活運(yùn)用等差數(shù)列的通項(xiàng)公式、前n項(xiàng)和公式解決有關(guān)問(wèn)題。 3、理解等比數(shù)列、等比中項(xiàng)的概念,會(huì)運(yùn)用等比數(shù)列的.通項(xiàng)公式、前n項(xiàng)和公式解決有關(guān)問(wèn)題。 (五)導(dǎo)數(shù) 1、理解導(dǎo)數(shù)的概念及其幾何意義。 2、掌握函數(shù)y=c(c為常數(shù)),y=c(n∈N+)的導(dǎo)數(shù)公式,會(huì)求多項(xiàng)式函數(shù)的導(dǎo)數(shù)。 3、了解極大值、極小值、最大值、最小值的概念,并會(huì)用導(dǎo)數(shù)求多項(xiàng)式函數(shù)的單調(diào)區(qū)間、極大值、極小值及閉區(qū)間上的最大值和最小值。 4、會(huì)求有關(guān)曲線的切線議程,會(huì)用導(dǎo)數(shù)求簡(jiǎn)單實(shí)際問(wèn)題的最大值與最小值。 第二部分三角函數(shù) (一)三角函數(shù)及其有關(guān)概念 1、了解任意角的概念,理解象限角和終邊相同的角的概念。 2、了解弧度的概念,會(huì)進(jìn)行弧度與角度的換算。 3、理解任意三角函數(shù)的概念,了解三角函數(shù)在各象限的符號(hào)和特殊角的三角函數(shù)值。 (二)三角函數(shù)式的變換 1、掌握同角三角函數(shù)間的基本關(guān)系式、誘導(dǎo)公式,會(huì)運(yùn)用它們進(jìn)行計(jì)算、化簡(jiǎn)和證明。 2、掌握兩角和、兩角差、二倍角的正弦、余弦、正切的公式,會(huì)用它們進(jìn)行計(jì)算、化簡(jiǎn)和證明。 (三)三角函數(shù)的圖象和性質(zhì) 1、掌握正弦函數(shù)、余弦函數(shù)的圖象和性質(zhì),會(huì)用這兩個(gè)函數(shù)的性質(zhì)(定義域、值域、周期性、奇偶性和單調(diào)性)解決有關(guān)問(wèn)題。 2、了解正切函數(shù)的圖象和性質(zhì)。 3、會(huì)求函數(shù)y=Asin(ωx+Ф)的周期、最大值和最小值。 4、會(huì)由已知三角函數(shù)值求角,并會(huì)作符號(hào)arcsinx、arccosx,、arctanx表示。 (四)解三角形 1、掌握直角三角形的邊角關(guān)系,會(huì)用它們解直角三角形。 2、掌握正弦定理和余弦定理,會(huì)用它們解斜三角形。 第三部分平面解析幾何 (一)平面向量 1、理解向量的概念,掌握向量的幾何表示,了解共線向量的概念。 2、掌握向量的加、減運(yùn)算,掌握數(shù)乘向量的運(yùn)算,了解兩個(gè)向量共線的條件。 3、了解向量的分解定理。 4、掌握向量數(shù)量積運(yùn)算,了解其幾何意義和在處理長(zhǎng)度、角度及垂直問(wèn)題的應(yīng)用4了解向量垂直的條件。 5、了解向量的直角坐標(biāo)的概念,掌握向量的坐標(biāo)運(yùn)算。 6、掌握平面內(nèi)兩點(diǎn)間的距離公式、線段的中點(diǎn)公式和平移公式。 (二)直線 1、理解直線的傾斜角和斜率的概念,會(huì)求直線的斜率。 2、會(huì)求直線方程,會(huì)用直線方程解決有關(guān)問(wèn)題。 3了解兩條直線平行與垂直的條件以及點(diǎn)到直線的距離公式,會(huì)用它們解決有關(guān)問(wèn)題。 (三)圓錐曲線 1、了解曲線和方程的關(guān)系,會(huì)求兩條曲線的交點(diǎn)。 2、掌握?qǐng)A的標(biāo)準(zhǔn)方程和一般方程式以及直線與圓的位置關(guān)系,能靈活運(yùn)用它們解決有關(guān)問(wèn)題。 3、理解橢圓、雙曲線、拋物線的概念,掌握它們的標(biāo)準(zhǔn)方程和性質(zhì),會(huì)用它們解決有關(guān)問(wèn)題。 第四部分概率與統(tǒng)計(jì)初步 (一)排列、組合 1、了解分類計(jì)數(shù)原理和分步計(jì)數(shù)原理。 2、了解排列、組合的意義,會(huì)用排列數(shù)、組合數(shù)的計(jì)算公式。 3、會(huì)解排列、組合的簡(jiǎn)單應(yīng)用題。 (二)概率初步 1、了解隨機(jī)事件及其概率的意義。 2、了解等可能性事件的概率的意義,會(huì)用計(jì)數(shù)方法和排列組合基本公式計(jì)算一些等可能性事件的概率。 3、了解互斥事件的意義,會(huì)用互斥事件的概率加法公式計(jì)算一些事件的概率。 4、了解相互獨(dú)立事件的意義,會(huì)用相互獨(dú)立事件的概率乘法公式計(jì)算一些事件的概率。 5、會(huì)計(jì)算事件在n次獨(dú)立重復(fù)試驗(yàn)中恰好發(fā)生k次的概率。 1集合思想及應(yīng)用 集合是高中數(shù)學(xué)的基本知識(shí),為歷年必考內(nèi)容之一,主要考查對(duì)集合基本概念的認(rèn)識(shí)和理解。 例:已知集合A={(x,y)|x2+mx—y+2=0},B={(x,y)|x—y+1=0,且0≤x≤2},如果A∩B≠,求實(shí)數(shù)m的取值范圍。 2充要條件的判定 充分條件、必要條件和充要條件是重要的數(shù)學(xué)概念,主要用來(lái)區(qū)分命題的條件p和結(jié)論q之間的關(guān)系。 例:已知關(guān)于x的實(shí)系數(shù)二次方程x2+ax+b=0有兩個(gè)實(shí)數(shù)根α、β,證明:|α|<2且|β|<2是2|a|<4+b且|b|<4的充要條件 3運(yùn)用向量法解題 本節(jié)內(nèi)容主要是幫助考生運(yùn)用向量法來(lái)分析,解決一些相關(guān)問(wèn)題。 例:三角形ABC中,A(5,—1)、B(—1,7)、C(1,2),求:(1)BC邊上的中線 AM的長(zhǎng);(2)∠CAB的平分線AD的長(zhǎng);(3)cosABC的值。 4三個(gè)“二次”及關(guān)系 三個(gè)“二次”即一元二次函數(shù)、一元二次方程、一元二次不等式是中學(xué)數(shù)學(xué)的重要內(nèi)容,具有豐富的內(nèi)涵和密切的聯(lián)系,同時(shí)也是研究包含二次曲線在內(nèi)的許多內(nèi)容的工具。高考試題中近一半的試題與這三個(gè)“二次”問(wèn)題有關(guān)。 例:已知對(duì)于x的所有實(shí)數(shù)值,二次函數(shù)f(x)=x2—4ax+2a+12(a∈R)的值都是非負(fù)的,求關(guān)于x的方程=|a—1|+2的根的取值范圍。 5求解函數(shù)解析式 求解函數(shù)解析式是高考重點(diǎn)考查內(nèi)容之一,需引起重視。 例:已知f(2—cosx)=cos2x+cosx,求f(x—1)。 例:(1)已知函數(shù)f(x)滿足f(logax)=(其中a>0,a≠1,x>0),求f(x)的表達(dá)式。 。2)已知二次函數(shù)f(x)=ax2+bx+c滿足|f(1)|=|f(—1)|=|f(0)|=1,求f(x)的表達(dá)式。 6函數(shù)值域及求法 函數(shù)的值域及其求法是近幾年高考考查的重點(diǎn)內(nèi)容之一。 例:設(shè)m是實(shí)數(shù),記M={m|m>1},f(x)=log3(x2—4mx+4m2+m+)。 (1)證明:當(dāng)m∈M時(shí),f(x)對(duì)所有實(shí)數(shù)都有意義;反之,若f(x)對(duì)所有實(shí)數(shù)x都有意義,則m∈M。 (2)當(dāng)m∈M時(shí),求函數(shù)f(x)的最小值。 。3)求證:對(duì)每個(gè)m∈M,函數(shù)f(x)的最小值都不小于1。 7奇偶性與單調(diào)性(一) 函數(shù)的單調(diào)性、奇偶性是高考的重點(diǎn)內(nèi)容之一,掌握判定方法,正確認(rèn)識(shí)單調(diào)函數(shù)與奇偶函數(shù)的圖象。 例:設(shè)a>0,f(x)=是R上的偶函數(shù),(1)求a的值;(2)證明:f(x)在(0,+∞)上是增函數(shù)。 8奇偶性與單調(diào)性(二) 函數(shù)的單調(diào)性、奇偶性是高考的重點(diǎn)和熱點(diǎn)內(nèi)容之一,特別是兩性質(zhì)的應(yīng)用更加突出。本節(jié)主要幫助考生學(xué)會(huì)怎樣利用兩性質(zhì)解題,掌握基本方法,形成應(yīng)用意識(shí)。 例:已知偶函數(shù)f(x)在(0,+∞)上為增函數(shù),且f(2)=0,解不等式f[log2(x2+5x+4)]≥0。 例:已知奇函數(shù)f(x)是定義在(—3,3)上的減函數(shù),且滿足不等式f(x—3)+f(x2—3)<0,設(shè)不等式解集為A,B=A∪{x|1≤x≤ },求函數(shù)g(x)=—3x2+3x—4(x∈B)的最大值。 9指數(shù)函數(shù)、對(duì)數(shù)函數(shù)問(wèn)題 指數(shù)函數(shù)、對(duì)數(shù)函數(shù)是高考考查的重點(diǎn)內(nèi)容之一。 例:設(shè)f(x)=log2,F(xiàn)(x)= +f(x)。 。1)試判斷函數(shù)f(x)的單調(diào)性,并用函數(shù)單調(diào)性定義,給出證明; 。2)若f(x)的反函數(shù)為f—1(x),證明:對(duì)任意的自然數(shù)n(n≥3),都有f—1(n)>; 。3)若F(x)的反函數(shù)F—1(x),證明:方程F—1(x)=0有惟一解。 10函數(shù)圖象與圖象變換 函數(shù)的圖象與性質(zhì)是高考考查的重點(diǎn)內(nèi)容之一,掌握函數(shù)圖象變化的一般規(guī)律,能利用函數(shù)的圖象研究函數(shù)的性質(zhì)。 例:已知函數(shù)f(x)=ax3+bx2+cx+d的圖象如圖,求b的范圍。 11函數(shù)中的綜合問(wèn)題 函數(shù)綜合問(wèn)題是歷年高考的熱點(diǎn)和重點(diǎn)內(nèi)容之一,一般難度較大。 例:設(shè)函數(shù)f(x)的定義域?yàn)镽,對(duì)任意實(shí)數(shù)x、y都有f(x+y)=f(x)+f(y),當(dāng)x>0時(shí)f(x)<0且f(3)=—4。 (1)求證:f(x)為奇函數(shù); (2)在區(qū)間[—9,9]上,求f(x)的最值。 12三角函數(shù)的圖象和性質(zhì) 三角函數(shù)的圖象和性質(zhì)是高考的熱點(diǎn),在復(fù)習(xí)時(shí)要充分運(yùn)用數(shù)形結(jié)合的思想,把圖象和性質(zhì)結(jié)合起來(lái)。本節(jié)主要幫助考生掌握?qǐng)D象和性質(zhì)并會(huì)靈活運(yùn)用。 例:已知α、β為銳角,且x(α+β—)>0,試證不等式f(x)= x<2對(duì)一切非零實(shí)數(shù)都成立。 例:設(shè)z1=m+(2—m2)i,z2=cosθ+(λ+sinθ)i,其中m,λ,θ∈R,已知z1=2z2,求λ的取值范圍。 163三角函數(shù)式的化簡(jiǎn)與求值 三角函數(shù)式的化簡(jiǎn)和求值是高考考查的重點(diǎn)內(nèi)容之一。通過(guò)本節(jié)的學(xué)習(xí)使考生掌握化簡(jiǎn)和求值問(wèn)題的解題規(guī)律和途徑,特別是要掌握化簡(jiǎn)和求值的一些常規(guī)技巧,以優(yōu)化我們的解題效果,做到事半功倍。 例:已知<β<α<,cos(α—β)=,sin(α+β)=—,求sin2α的值_________。 14三角形中的三角函數(shù)式 三角形中的三角函數(shù)關(guān)系是歷年高考的重點(diǎn)內(nèi)容之一。 ●已知△ABC的'三個(gè)內(nèi)角A、B、C滿足A+C=2B。,求cos的值。 15不等式的證明策略 不等式的證明,方法靈活多樣,它可以和很多內(nèi)容結(jié)合。高考解答題中,常滲透不等式證明的內(nèi)容,純不等式的證明,歷來(lái)是高中數(shù)學(xué)中的一個(gè)難點(diǎn),本難點(diǎn)著重培養(yǎng)考生數(shù)學(xué)式的變形能力,邏輯思維能力以及分析問(wèn)題和解決問(wèn)題的能力。 16解不等式 不等式在生產(chǎn)實(shí)踐和相關(guān)學(xué)科的學(xué)習(xí)中應(yīng)用廣泛,又是學(xué)習(xí)高等數(shù)學(xué)的重要工具,所以不等式是高考數(shù)學(xué)命題的重點(diǎn),解不等式的應(yīng)用非常廣泛,如求函數(shù)的定義域、值域,求參數(shù)的取值范圍等,高考試題中對(duì)于解不等式要求較高,往往與函數(shù)概念,特別是二次函數(shù)、指數(shù)函數(shù)、對(duì)數(shù)函數(shù)等有關(guān)概念和性質(zhì)密切聯(lián)系,應(yīng)重視;從歷年高考題目看,關(guān)于解不等式的內(nèi)容年年都有,有的是直接考查解不等式,有的則是間接考查解不等式。 17不等式的綜合應(yīng)用 不等式是繼函數(shù)與方程之后的又一重點(diǎn)內(nèi)容之一,作為解決問(wèn)題的工具,與其他知識(shí)綜合運(yùn)用的特點(diǎn)比較突出。不等式的應(yīng)用大致可分為兩類:一類是建立不等式求參數(shù)的取值范圍或解決一些實(shí)際應(yīng)用問(wèn)題;另一類是建立函數(shù)關(guān)系,利用均值不等式求最值問(wèn)題、本難點(diǎn)提供相關(guān)的思想方法,使考生能夠運(yùn)用不等式的性質(zhì)、定理和方法解決函數(shù)、方程、實(shí)際應(yīng)用等方面的問(wèn)題。 例:設(shè)二次函數(shù)f(x)=ax2+bx+c(a>0),方程f(x)—x=0的兩個(gè)根x1、x2滿足0 。1)當(dāng)x∈[0,x1時(shí),證明x (2)設(shè)函數(shù)f(x)的圖象關(guān)于直線x=x0對(duì)稱,證明:x0< 。 高中數(shù)學(xué)復(fù)習(xí)的五大要點(diǎn)分析 一、端正態(tài)度,切忌浮躁,忌急于求成 在第一輪復(fù)習(xí)的過(guò)程中,心浮氣躁是一個(gè)非常普遍的現(xiàn)象。主要表現(xiàn)為平時(shí)復(fù)習(xí)覺(jué)得沒(méi)有問(wèn)題,題目也能做,但是到了考試時(shí)就是拿不了高分!這主要是因?yàn)椋?/p> (1)對(duì)復(fù)習(xí)的知識(shí)點(diǎn)缺乏系統(tǒng)的理解,解題時(shí)缺乏思維層次結(jié)構(gòu)。第一輪復(fù)習(xí)著重對(duì)基礎(chǔ)知識(shí)點(diǎn)的挖掘,數(shù)學(xué)老師一定都會(huì)反復(fù)強(qiáng)調(diào)基礎(chǔ)的重要性。如果不重視對(duì)知識(shí)點(diǎn)的系統(tǒng)化分析,不能構(gòu)成一個(gè)整體的知識(shí)網(wǎng)絡(luò)構(gòu)架,自然在解題時(shí)就不能擁有整體的構(gòu)思,也不能深入理解高考典型例題的思維方法。 (2)復(fù)習(xí)的時(shí)候心不靜。心不靜就會(huì)導(dǎo)致思維不清晰,而思維不清晰就會(huì)促使復(fù)習(xí)沒(méi)有效率。建議大家在開(kāi)始一個(gè)學(xué)科的復(fù)習(xí)之前,先靜下心來(lái)認(rèn)真想一想接下來(lái)需要復(fù)習(xí)哪一塊兒,需要做多少事情,然后認(rèn)真去做,同時(shí)需要很高的注意力,只有這樣才會(huì)有很好的效果。 (3)在第一輪復(fù)習(xí)階段,學(xué)習(xí)的重心應(yīng)該轉(zhuǎn)移到基礎(chǔ)復(fù)習(xí)上來(lái)。 因此,建議廣大同學(xué)在一輪復(fù)習(xí)的時(shí)候千萬(wàn)不要急于求成,一定要靜下心來(lái),認(rèn)真的揣摩每個(gè)知識(shí)點(diǎn),弄清每一個(gè)原理。只有這樣,一輪復(fù)習(xí)才能顯出成效。 二、注重教材、注重基礎(chǔ),忌盲目做題 要把書(shū)本中的常規(guī)題型做好,所謂做好就是要用最少的時(shí)間把題目做對(duì)。部分同學(xué)在第一輪復(fù)習(xí)時(shí)對(duì)基礎(chǔ)題不予以足夠的重視,認(rèn)為題目看上去會(huì)做就可以不加訓(xùn)練,結(jié)果常在一些“不該錯(cuò)的地方錯(cuò)了”,最終把原因簡(jiǎn)單的歸結(jié)為粗心,從而忽視了對(duì)基本概念的掌握,對(duì)基本結(jié)論和公式的記憶及基本計(jì)算的訓(xùn)練和常規(guī)方法的積累,造成了實(shí)際成績(jī)與心理感覺(jué)的偏差。 可見(jiàn),數(shù)學(xué)的基本概念、定義、公式,數(shù)學(xué)知識(shí)點(diǎn)的聯(lián)系,基本的數(shù)學(xué)解題思路與方法,是第一輪復(fù)習(xí)的重中之重。不妨以既是重點(diǎn)也是難點(diǎn)的函數(shù)部分為例,就必須掌握函數(shù)的概念,建立函數(shù)關(guān)系式,掌握定義域、值域與最值、奇偶性、單調(diào)性、周期性、對(duì)稱性等性質(zhì),學(xué)會(huì)利用圖像即數(shù)形結(jié)合。 三、抓薄弱環(huán)節(jié),做好復(fù)習(xí)的針對(duì)性,忌無(wú)計(jì)劃 每個(gè)同學(xué)在數(shù)學(xué)學(xué)習(xí)上遇到的問(wèn)題有共同點(diǎn),更有不同點(diǎn)。在復(fù)習(xí)課上,老師只能針對(duì)性去解決共同點(diǎn),而同學(xué)們自己的個(gè)別問(wèn)題則需要通過(guò)自己的思考,與同學(xué)們的討論,并向老師提問(wèn)來(lái)解決問(wèn)題,我們提倡同學(xué)多問(wèn)老師,要敢于問(wèn)。每個(gè)同學(xué)必須了解自己掌握了什么,還有哪些問(wèn)題沒(méi)有解決,要明確只有把漏洞一一補(bǔ)上才能提高。復(fù)習(xí)的過(guò)程,實(shí)質(zhì)就是解決問(wèn)題的過(guò)程,問(wèn)題解決了,復(fù)習(xí)的效果就實(shí)現(xiàn)了。同時(shí),也請(qǐng)同學(xué)們注意:在你問(wèn)問(wèn)題之前先經(jīng)過(guò)自己思考,不要把不經(jīng)過(guò)思考的問(wèn)題就直接去問(wèn),因?yàn)檫@并不能起到更大作用。 高三的復(fù)習(xí)一定是有計(jì)劃、有目標(biāo)的`,所以千萬(wàn)不要盲目做題。第一輪復(fù)習(xí)非常具有針對(duì)性,對(duì)于所有知識(shí)點(diǎn)的地毯式轟炸,一定要做到不缺不漏。因此,僅靠簡(jiǎn)單做題是達(dá)不到一輪復(fù)習(xí)應(yīng)該具有的效果。而且盲目做題沒(méi)有針對(duì)性,更不會(huì)有全面性。在概念模糊的情況下一定要回歸課本,注意教材上最清晰的概念與原理,注重對(duì)知識(shí)點(diǎn)運(yùn)用方法的總結(jié)。 四、在平時(shí)做題中要養(yǎng)成良好的解題習(xí)慣,忌不思 1.樹(shù)立信心,養(yǎng)成良好的運(yùn)算習(xí)慣。部分同學(xué)平時(shí)學(xué)習(xí)過(guò)程中自信心不足,做作業(yè)時(shí)免不了互相對(duì)答案,也不認(rèn)真找出錯(cuò)誤原因并加以改正!皶(huì)而不對(duì)”是高三數(shù)學(xué)學(xué)習(xí)的大忌,常見(jiàn)的有審題失誤、計(jì)算錯(cuò)誤等,平時(shí)都以為是粗心,其實(shí)這就是一種非常不好的習(xí)慣,必須在第一輪復(fù)習(xí)中逐步克服,否則,后患無(wú)窮?山Y(jié)合平時(shí)解題中存在的具體問(wèn)題,逐題找出原因,看其是行為習(xí)慣方面的原因,還是知識(shí)方面的缺陷,再有針對(duì)性加以解決。必要時(shí)作些記錄,也就是錯(cuò)題本,每位同學(xué)必備的,以便以后查詢。 2.做好解題后的開(kāi)拓引申,培養(yǎng)一題多解和舉一反三的能力。解題能力的培養(yǎng)可以從一題多解和舉一反三中得到提高,因而解完題后,需要再回味和引申,它包括對(duì)解題方法的開(kāi)拓引申,即一道數(shù)學(xué)題從不同的角度去考慮去分析,可以有不同的思路,不同的解法。 考慮的愈廣泛愈深刻,獲得的思路愈廣闊,解法愈多樣;及對(duì)題目做開(kāi)拓引申,引申出新題和新解法,有利于培養(yǎng)同學(xué)們的發(fā)散思維,激發(fā)創(chuàng)造精神,提高解題能力: (1)把題目條件開(kāi)拓引申。 ①把特殊條件一般化;②把一般條件特殊化;③把特殊條件和一般條件交替變化。 (2)把題目結(jié)論開(kāi)拓引申。 (3)把題型開(kāi)拓引申,同一個(gè)題目,給出不同的提法,可以變成不同的題型。俗稱為“一題多變”但其解法仍類似,按其解法而言,這些題又可稱為“多題一解”或“一法多用”。 3.提高解題速度,掌握解題技巧。提高解題速度的主要因素有二:一是解題方法的巧妙與簡(jiǎn)捷;二是對(duì)常規(guī)解法的掌握是否達(dá)到高度的熟練程度。 五、學(xué)會(huì)總結(jié)、歸納,訓(xùn)練到位,忌題量不足 我在暑期上課的時(shí)候發(fā)現(xiàn),很多同學(xué)都是一看到題目就開(kāi)始做題,這也是一輪復(fù)習(xí)應(yīng)該避免的地方。做題如果不注重思路的分析,知識(shí)點(diǎn)的運(yùn)用,效果可想而知。因此建議同學(xué)們?cè)谧鲱}前要把老師上課時(shí)復(fù)習(xí)的知識(shí)再回顧一下,梳理知識(shí)體系,回顧各個(gè)知識(shí)點(diǎn),對(duì)所學(xué)的知識(shí)結(jié)構(gòu)要有一個(gè)完整清楚的認(rèn)識(shí),認(rèn)真分析題目考查的知識(shí),思想,以及方法,還要學(xué)會(huì)總結(jié)歸納不留下任何知識(shí)的盲點(diǎn),在一輪復(fù)習(xí)中要注意對(duì)各個(gè)知識(shí)點(diǎn)的細(xì)化。這個(gè)過(guò)程不需要很長(zhǎng)的時(shí)間,而且到了后續(xù)階段會(huì)越來(lái)越熟練。因此,養(yǎng)成良好的做題習(xí)慣,有助于訓(xùn)練自己的解題思維,提高自己的解題能力。 實(shí)踐出真知,充足的題量是把理論轉(zhuǎn)化為能力的一種保障,在足夠的題目的練習(xí)下不僅可以更扎實(shí)的掌握知識(shí)點(diǎn),還可以更深入的了解知識(shí)點(diǎn),避免出現(xiàn)“會(huì)而不對(duì)、對(duì)而不全”的現(xiàn)象。由于高考依然是以做題為主,所以解題能力是高考分?jǐn)?shù)的一個(gè)直接反映,尤其是數(shù)學(xué)試題。而解題能力不是三兩道題就能提升的,而是要大量的反復(fù)的訓(xùn)練、認(rèn)真細(xì)致的推敲才會(huì)有較大的提升。有句話說(shuō)的好,“量變導(dǎo)致質(zhì)變”,因此,同學(xué)們?cè)诿空聫?fù)習(xí)的時(shí)候,一定要做足夠的題,才能夠充分的理解這一章的內(nèi)容,才能夠做到對(duì)這一章知識(shí)點(diǎn)的熟練運(yùn)用。 但是,大量訓(xùn)練絕對(duì)不是題海戰(zhàn)術(shù)。因?yàn)獒槍?duì)每章節(jié)做題都有目標(biāo),同時(shí)做題訓(xùn)練都需要不斷的總結(jié),既要橫向總結(jié),也要縱向深入。只要在每章節(jié)做題做到一定程度的時(shí)候都能感覺(jué)到這一章的知識(shí)點(diǎn)有哪些,典型題型有哪些,方法和技巧有哪些,換句話說(shuō),如果隨機(jī)抽取一些近幾年關(guān)于這一章的高考題都會(huì)做,那我認(rèn)為就可以了。 高中數(shù)學(xué)知識(shí)點(diǎn)歸納 1.必修課程由5個(gè)模塊組成: 必修1:集合,函數(shù)概念與基本初等函數(shù)(指數(shù)函數(shù),冪函數(shù),對(duì)數(shù)函數(shù)) 必修2:立體幾何初步、平面解析幾何初步。 必修3:算法初步、統(tǒng)計(jì)、概率。 必修4:基本初等函數(shù)(三角函數(shù))、平面向量、三角恒等變換。 必修5:解三角形、數(shù)列、不等式。 以上所有的知識(shí)點(diǎn)是所有高中生必須掌握的,而且要懂得運(yùn)用。 選修課程分為4個(gè)系列: 系列1:2個(gè)模塊 選修1-1:常用邏輯用語(yǔ)、圓錐曲線與方程、空間向量與立體幾何。 選修1-2:統(tǒng)計(jì)案例、推理與證明、數(shù)系的擴(kuò)充與復(fù)數(shù)、框圖 系列2:3個(gè)模塊 選修2-1:常用邏輯用語(yǔ)、圓錐曲線與方程、空間向量與立體幾何 選修2-2:導(dǎo)數(shù)及其應(yīng)用、推理與證明、數(shù)系的擴(kuò)充與復(fù)數(shù) 選修2-3:計(jì)數(shù)原理、隨機(jī)變量及其分布列、統(tǒng)計(jì)案例 選修4-1:幾何證明選講 選修4-4:坐標(biāo)系與參數(shù)方程 選修4-5:不等式選講 2.重難點(diǎn)及其考點(diǎn): 重點(diǎn):函數(shù),數(shù)列,三角函數(shù),平面向量,圓錐曲線,立體幾何,導(dǎo)數(shù) 難點(diǎn):函數(shù),圓錐曲線 高考相關(guān)考點(diǎn): 1.集合與邏輯:集合的邏輯與運(yùn)算(一般出現(xiàn)在高考卷的第一道選擇題)、簡(jiǎn)易邏輯、充要條件 2.函數(shù):映射與函數(shù)、函數(shù)解析式與定義域、值域與最值、反函數(shù)、三大性質(zhì)、函數(shù)圖象、指數(shù)函數(shù)、對(duì)數(shù)函數(shù)、函數(shù)的應(yīng)用 3.數(shù)列:數(shù)列的有關(guān)概念、等差數(shù)列、等比數(shù)列、數(shù)列求通項(xiàng)、求和 4.三角函數(shù):有關(guān)概念、同角關(guān)系與誘導(dǎo)公式、和差倍半公式、求值、化簡(jiǎn)、證明、三角函數(shù)的圖像及其性質(zhì)、應(yīng)用 5.平面向量:初等運(yùn)算、坐標(biāo)運(yùn)算、數(shù)量積及其應(yīng)用 6.不等式:概念與性質(zhì)、均值不等式、不等式的證明、不等式的解法、絕對(duì)值不等式(經(jīng)常出現(xiàn)在大題的選做題里)、不等式的應(yīng)用 7.直線與圓的方程:直線的方程、兩直線的位置關(guān)系、線性規(guī)劃、圓、直線與圓的位置關(guān)系 8.圓錐曲線方程:橢圓、雙曲線、拋物線、直線與圓錐曲線的位置關(guān)系、軌跡問(wèn)題、圓錐曲線的應(yīng)用 9.直線、平面、簡(jiǎn)單幾何體:空間直線、直線與平面、平面與平面、棱柱、棱錐、球、空間向量 10.排列、組合和概率:排列、組合應(yīng)用題、二項(xiàng)式定理及其應(yīng)用 11.概率與統(tǒng)計(jì):概率、分布列、期望、方差、抽樣、正態(tài)分布 12.導(dǎo)數(shù):導(dǎo)數(shù)的概念、求導(dǎo)、導(dǎo)數(shù)的應(yīng)用 13.復(fù)數(shù):復(fù)數(shù)的概念與運(yùn)算 高三數(shù)學(xué)重要知識(shí)點(diǎn)總結(jié) 考點(diǎn)一:集合與簡(jiǎn)易邏輯 集合部分一般以選擇題出現(xiàn),屬容易題。重點(diǎn)考查集合間關(guān)系的理解和認(rèn)識(shí)。近年的試題加強(qiáng)了對(duì)集合計(jì)算化簡(jiǎn)能力的考查,并向無(wú)限集發(fā)展,考查抽象思維能力。在解決這些問(wèn)題時(shí),要注意利用幾何的直觀性,并注重集合表示方法的轉(zhuǎn)換與化簡(jiǎn)。簡(jiǎn)易邏輯考查有兩種形式:一是在選擇題和填空題中直接考查命題及其關(guān)系、邏輯聯(lián)結(jié)詞、“充要關(guān)系”、命題真?zhèn)蔚呐袛唷⑷Q命題和特稱命題的否定等,二是在解答題中深層次考查常用邏輯用語(yǔ)表達(dá)數(shù)學(xué)解題過(guò)程和邏輯推理。 考點(diǎn)二:函數(shù)與導(dǎo)數(shù) 函數(shù)是高考的重點(diǎn)內(nèi)容,以選擇題和填空題的為載體針對(duì)性考查函數(shù)的定義域與值域、函數(shù)的性質(zhì)、函數(shù)與方程、基本初等函數(shù)(一次和二次函數(shù)、指數(shù)、對(duì)數(shù)、冪函數(shù))的應(yīng)用等,分值約為10分,解答題與導(dǎo)數(shù)交匯在一起考查函數(shù)的性質(zhì)。導(dǎo)數(shù)部分一方面考查導(dǎo)數(shù)的運(yùn)算與導(dǎo)數(shù)的幾何意義,另一方面考查導(dǎo)數(shù)的簡(jiǎn)單應(yīng)用,如求函數(shù)的單調(diào)區(qū)間、極值與最值等,通常以客觀題的形式出現(xiàn),屬于容易題和中檔題,三是導(dǎo)數(shù)的綜合應(yīng)用,主要是和函數(shù)、不等式、方程等聯(lián)系在一起以解答題的形式出現(xiàn),如一些不等式恒成立問(wèn)題、參數(shù)的取值范圍問(wèn)題、方程根的個(gè)數(shù)問(wèn)題、不等式的證明等問(wèn)題。 考點(diǎn)三:三角函數(shù)與平面向量 一般是2道小題,1道綜合解答題。小題一道考查平面向量有關(guān)概念及運(yùn)算等,另一道對(duì)三角知識(shí)點(diǎn)的補(bǔ)充。大題中如果沒(méi)有涉及正弦定理、余弦定理的應(yīng)用,可能就是一道和解答題相互補(bǔ)充的三角函數(shù)的圖像、性質(zhì)或三角恒等變換的題目,也可能是考查平面向量為主的試題,要注意數(shù)形結(jié)合思想在解題中的應(yīng)用。向量重點(diǎn)考查平面向量數(shù)量積的概念及應(yīng)用,向量與直線、圓錐曲線、數(shù)列、不等式、三角函數(shù)等結(jié)合,解決角度、垂直、共線等問(wèn)題是“新熱點(diǎn)”題型. 考點(diǎn)四:數(shù)列與不等式 不等式主要考查一元二次不等式的解法、一元二次不等式組和簡(jiǎn)單線性規(guī)劃問(wèn)題、基本不等式的應(yīng)用等,通常會(huì)在小題中設(shè)置1到2道題。對(duì)不等式的工具性穿插在數(shù)列、解析幾何、函數(shù)導(dǎo)數(shù)等解答題中進(jìn)行考查.在選擇、填空題中考查等差或等比數(shù)列的概念、性質(zhì)、通項(xiàng)公式、求和公式等的靈活應(yīng)用,一道解答題大多凸顯以數(shù)列知識(shí)為工具,綜合運(yùn)用函數(shù)、方程、不等式等解決問(wèn)題的能力,它們都屬于中、高檔題目. 考點(diǎn)五:立體幾何與空間向量 一是考查空間幾何體的結(jié)構(gòu)特征、直觀圖與三視圖;二是考查空間點(diǎn)、線、面之間的位置關(guān)系;三是考查利用空間向量解決立體幾何問(wèn)題:利用空間向量證明線面平行與垂直、求空間角等(文科不要求).在高考試卷中,一般有1~2個(gè)客觀題和一個(gè)解答題,多為中檔題。 考點(diǎn)六:解析幾何 一般有1~2個(gè)客觀題和1個(gè)解答題,其中客觀題主要考查直線斜率、直線方程、圓的方程、直線與圓的位置關(guān)系、圓錐曲線的定義應(yīng)用、標(biāo)準(zhǔn)方程的求解、離心率的計(jì)算等,解答題則主要考查直線與橢圓、拋物線等的位置關(guān)系問(wèn)題,經(jīng)常與平面向量、函數(shù)與不等式交匯,考查一些存在性問(wèn)題、證明問(wèn)題、定點(diǎn)與定值、最值與范圍問(wèn)題等。 考點(diǎn)七:算法復(fù)數(shù)推理與證明 高考對(duì)算法的考查以選擇題或填空題的形式出現(xiàn),或給解答題披層“外衣”.考查的熱點(diǎn)是流程圖的識(shí)別與算法語(yǔ)言的閱讀理解.算法與數(shù)列知識(shí)的網(wǎng)絡(luò)交匯命題是考查的主流.復(fù)數(shù)考查的重點(diǎn)是復(fù)數(shù)的有關(guān)概念、復(fù)數(shù)的代數(shù)形式、運(yùn)算及運(yùn)算的幾何意義,一般是選擇題、填空題,難度不大.推理證明部分命題的方向主要會(huì)在函數(shù)、三角、數(shù)列、立體幾何、解析幾何等方面,單獨(dú)出題的可能性較小。對(duì)于理科,數(shù)學(xué)歸納法可能作為解答題的一小問(wèn). 高三數(shù)學(xué)知識(shí)點(diǎn)歸納 一、函數(shù)的定義域的常用求法: 1、分式的分母不等于零; 2、偶次方根的被開(kāi)方數(shù)大于等于零; 3、對(duì)數(shù)的真數(shù)大于零; 4、指數(shù)函數(shù)和對(duì)數(shù)函數(shù)的底數(shù)大于零且不等于1; 5、三角函數(shù)正切函數(shù)y=tanx中x≠kπ+π/2; 6、如果函數(shù)是由實(shí)際意義確定的解析式,應(yīng)依據(jù)自變量的實(shí)際意義確定其取值范圍。 二、函數(shù)的解析式的常用求法: 1、定義法; 2、換元法; 3、待定系數(shù)法; 4、函數(shù)方程法; 5、參數(shù)法; 6、配方法 三、函數(shù)的值域的常用求法: 1、換元法; 2、配方法; 3、判別式法; 4、幾何法; 5、不等式法; 6、單調(diào)性法; 7、直接法 四、函數(shù)的最值的常用求法: 1、配方法; 2、換元法; 3、不等式法; 4、幾何法; 5、單調(diào)性法 五、函數(shù)單調(diào)性的常用結(jié)論: 1、若f(x),g(x)均為某區(qū)間上的增(減)函數(shù),則f(x)+g(x)在這個(gè)區(qū)間上也為增(減)函數(shù)。 2、若f(x)為增(減)函數(shù),則-f(x)為減(增)函數(shù)。 3、若f(x)與g(x)的單調(diào)性相同,則f[g(x)]是增函數(shù);若f(x)與g(x)的單調(diào)性不同,則f[g(x)]是減函數(shù)。 4、奇函數(shù)在對(duì)稱區(qū)間上的單調(diào)性相同,偶函數(shù)在對(duì)稱區(qū)間上的單調(diào)性相反。 5、常用函數(shù)的單調(diào)性解答:比較大小、求值域、求最值、解不等式、證不等式、作函數(shù)圖象。 六、函數(shù)奇偶性的常用結(jié)論: 1、如果一個(gè)奇函數(shù)在x=0處有定義,則f(0)=0,如果一個(gè)函數(shù)y=f(x)既是奇函數(shù)又是偶函數(shù),則f(x)=0(反之不成立)。 2、兩個(gè)奇(偶)函數(shù)之和(差)為奇(偶)函數(shù);之積(商)為偶函數(shù)。 3、一個(gè)奇函數(shù)與一個(gè)偶函數(shù)的積(商)為奇函數(shù)。 4、兩個(gè)函數(shù)y=f(u)和u=g(x)復(fù)合而成的函數(shù),只要其中有一個(gè)是偶函數(shù),那么該復(fù)合函數(shù)就是偶函數(shù);當(dāng)兩個(gè)函數(shù)都是奇函數(shù)時(shí),該復(fù)合函數(shù)是奇函數(shù)。 5、若函數(shù)f(x)的定義域關(guān)于原點(diǎn)對(duì)稱,則f(x)可以表示為f(x)=1/2[f(x)+f(-x)]+1/2[f(x)+f(-x)],該式的特點(diǎn)是:右端為一個(gè)奇函數(shù)和一個(gè)偶函數(shù)的和。 高中數(shù)學(xué)知識(shí)點(diǎn)總結(jié) 1、圓的標(biāo)準(zhǔn)方程: 圓心為A(a,b),半徑為r的圓的方程 2、點(diǎn)與圓的關(guān)系的判斷方法:(1),點(diǎn)在圓外(2),點(diǎn)在圓上(3),點(diǎn)在圓內(nèi) 4.1.2圓的一般方程 1、圓的一般方程: 2、圓的一般方程的特點(diǎn): (1)①x2和y2的系數(shù)相同,不等于0. 、跊](méi)有xy這樣的二次項(xiàng). (2)圓的一般方程中有三個(gè)特定的系數(shù)D、E、F,因之只要求出這三個(gè)系數(shù),圓的方程就確定了. (3)、與圓的標(biāo)準(zhǔn)方程相比較,它是一種特殊的二元二次方程,代數(shù)特征明顯,圓的標(biāo)準(zhǔn)方程則指出了圓心坐標(biāo)與半徑大小,幾何特征較明顯。 4.2.1圓與圓的位置關(guān)系 1、用點(diǎn)到直線的距離來(lái)判斷直線與圓的位置關(guān)系. 4.2.2圓與圓的位置關(guān)系 4.2.3直線與圓的方程的應(yīng)用 1、利用平面直角坐標(biāo)系解決直線與圓的位置關(guān)系; 2、過(guò)程與方法 用坐標(biāo)法解決幾何問(wèn)題的步驟: 第一步:建立適當(dāng)?shù)钠矫嬷苯亲鴺?biāo)系,用坐標(biāo)和方程表示問(wèn)題中的幾何元素,將平面幾何問(wèn)題轉(zhuǎn)化為代數(shù)問(wèn)題; 第二步:通過(guò)代數(shù)運(yùn)算,解決代數(shù)問(wèn)題; 第三步:將代數(shù)運(yùn)算結(jié)果“翻譯”成幾何結(jié)論. 4.3.1空間直角坐標(biāo)系 1、點(diǎn)M對(duì)應(yīng)著確定的有序?qū)崝?shù)組,對(duì)應(yīng)著空間直角坐標(biāo)系中的一點(diǎn)3、空間中任意點(diǎn)M的坐標(biāo)都可以用有序?qū)崝?shù)組來(lái)表示,該數(shù)組叫做點(diǎn)M在此空間直角坐標(biāo)系中的坐標(biāo),記M。 高考的數(shù)學(xué)知識(shí)點(diǎn) 立體幾何初步 1、柱、錐、臺(tái)、球的結(jié)構(gòu)特征 (1)棱柱: 定義:有兩個(gè)面互相平行,其余各面都是四邊形,且每相鄰兩個(gè)四邊形的公共邊都互相平行,由這些面所圍成的幾何體。 分類:以底面多邊形的邊數(shù)作為分類的標(biāo)準(zhǔn)分為三棱柱、四棱柱、五棱柱等。 表示:用各頂點(diǎn)字母,如五棱柱或用對(duì)角線的端點(diǎn)字母,如五棱柱。 幾何特征:兩底面是對(duì)應(yīng)邊平行的全等多邊形;側(cè)面、對(duì)角面都是平行四邊形;側(cè)棱平行且相等;平行于底面的截面是與底面全等的多邊形。 (2)棱錐 定義:有一個(gè)面是多邊形,其余各面都是有一個(gè)公共頂點(diǎn)的三角形,由這些面所圍成的幾何體。 分類:以底面多邊形的邊數(shù)作為分類的標(biāo)準(zhǔn)分為三棱錐、四棱錐、五棱錐等 表示:用各頂點(diǎn)字母,如五棱錐 幾何特征:側(cè)面、對(duì)角面都是三角形;平行于底面的截面與底面相似,其相似比等于頂點(diǎn)到截面距離與高的比的平方。 (3)棱臺(tái): 定義:用一個(gè)平行于棱錐底面的平面去截棱錐,截面和底面之間的部分。 分類:以底面多邊形的邊數(shù)作為分類的.標(biāo)準(zhǔn)分為三棱臺(tái)、四棱臺(tái)、五棱臺(tái)等。 表示:用各頂點(diǎn)字母,如五棱臺(tái) 幾何特征: 、偕舷碌酌媸窍嗨频钠叫卸噙呅 、趥(cè)面是梯形 ③側(cè)棱交于原棱錐的頂點(diǎn) (4)圓柱: 定義:以矩形的一邊所在的直線為軸旋轉(zhuǎn),其余三邊旋轉(zhuǎn)所成的曲面所圍成的幾何體。 幾何特征: 、俚酌媸侨鹊膱A; ②母線與軸平行; 、圯S與底面圓的半徑垂直; ④側(cè)面展開(kāi)圖是一個(gè)矩形。 (5)圓錐: 定義:以直角三角形的一條直角邊為旋轉(zhuǎn)軸,旋轉(zhuǎn)一周所成的曲面所圍成的幾何體。 幾何特征: ①底面是一個(gè)圓; 、谀妇交于圓錐的頂點(diǎn); ③側(cè)面展開(kāi)圖是一個(gè)扇形。 (6)圓臺(tái): 定義:用一個(gè)平行于圓錐底面的平面去截圓錐,截面和底面之間的部分 幾何特征: 、偕舷碌酌媸莾蓚(gè)圓; ②側(cè)面母線交于原圓錐的頂點(diǎn); 、蹅(cè)面展開(kāi)圖是一個(gè)弓形。 (7)球體: 定義:以半圓的直徑所在直線為旋轉(zhuǎn)軸,半圓面旋轉(zhuǎn)一周形成的幾何體 幾何特征: 、偾虻慕孛媸菆A; 、谇蛎嫔先我庖稽c(diǎn)到球心的距離等于半徑。 2、 空間幾何體的三視圖 定義三視圖:正視圖(光線從幾何體的前面向后面正投影);側(cè)視圖(從左向右)、俯視圖(從上向下) 注:正視圖反映了物體上下、左右的位置關(guān)系,即反映了物體的高度和長(zhǎng)度; 俯視圖反映了物體左右、前后的位置關(guān)系,即反映了物體的長(zhǎng)度和寬度; 側(cè)視圖反映了物體上下、前后的位置關(guān)系,即反映了物體的高度和寬度。 3、空間幾何體直觀圖——斜二測(cè)畫法 斜二測(cè)畫法特點(diǎn): ①原來(lái)與x軸平行的線段仍然與x平行且長(zhǎng)度不變; 、谠瓉(lái)與y軸平行的線段仍然與y平行,長(zhǎng)度為原來(lái)的一半。 【高考數(shù)學(xué)知識(shí)點(diǎn)總結(jié)】相關(guān)文章: 數(shù)學(xué)高考知識(shí)點(diǎn)總結(jié)11-29 數(shù)學(xué)高考知識(shí)點(diǎn)總結(jié)12-06 高考數(shù)學(xué)知識(shí)點(diǎn)總結(jié)12-09 高考數(shù)學(xué)知識(shí)點(diǎn)總結(jié)07-02 數(shù)學(xué)高考知識(shí)點(diǎn)11-05 數(shù)學(xué)高考知識(shí)點(diǎn)總結(jié)15篇11-29 數(shù)學(xué)高考知識(shí)點(diǎn)總結(jié)(15篇)11-29 數(shù)學(xué)高考知識(shí)點(diǎn)總結(jié)精選15篇11-30高考數(shù)學(xué)知識(shí)點(diǎn)總結(jié)2
高考數(shù)學(xué)知識(shí)點(diǎn)總結(jié)3
高考數(shù)學(xué)知識(shí)點(diǎn)總結(jié)4
高考數(shù)學(xué)知識(shí)點(diǎn)總結(jié)5
高考數(shù)學(xué)知識(shí)點(diǎn)總結(jié)6
高考數(shù)學(xué)知識(shí)點(diǎn)總結(jié)7
高考數(shù)學(xué)知識(shí)點(diǎn)總結(jié)8
高考數(shù)學(xué)知識(shí)點(diǎn)總結(jié)11
高考數(shù)學(xué)知識(shí)點(diǎn)總結(jié)12
高考數(shù)學(xué)知識(shí)點(diǎn)總結(jié)13
高考數(shù)學(xué)知識(shí)點(diǎn)總結(jié)14
高考數(shù)學(xué)知識(shí)點(diǎn)總結(jié)15