高考數(shù)學(xué)練習(xí)題集合
1. 下列八個(gè)關(guān)系式①{0}= ② =0 ③ { } ④ { } ⑤{0}
、0 ⑦ {0} ⑧ { }其中正確的個(gè)數(shù)
。ˋ)4 (B)5 (C)6 (D)7
2.集合{1,2,3}的真子集共有
。ˋ)5個(gè) (B)6個(gè) (C)7個(gè) (D)8個(gè)
3.集合A={x } B={ } C={ }又 則有
。ˋ)(a+b) A (B) (a+b) B (C)(a+b) C (D) (a+b) A、B、C任一個(gè)
4.設(shè)A、B是全集U的兩個(gè)子集,且A B,則下列式子成立的是
(A)CUA CUB (B)CUA CUB=U
。–)A CUB= (D)CUA B=
5.已知集合A={ }, B={ }則A =
(A)R (B){ }
(C){ } (D){ }
6.下列語(yǔ)句:(1)0與{0}表示同一個(gè)集合; (2)由1,2,3組成的集合可表示為
{1,2,3}或{3,2,1}; (3)方程(x-1)2(x-2)2=0的所有解的集合可表示為 {1,1,2}; (4)集合{ }是有限集,正確的是
(A)只有(1)和(4) (B)只有(2)和(3)
。–)只有(2) (D)以上語(yǔ)句都不對(duì)
7.設(shè)S、T是兩個(gè)非空集合,且S T,T S,令X=S 那么S∪X=
(A)X (B)T (C) (D)S
8設(shè)一元二次方程ax2+bx+c=0(a<0)的根的判別式 ,則不等式ax2+bx+c 0的解集為
(A)R (B) (C){ } (D){ }
填空題
9.在直角坐標(biāo)系中,坐標(biāo)軸上的點(diǎn)的集合可表示為
10.若A={1,4,x},B={1,x2}且A B=B,則x=
11.若A={x } B={x },全集U=R,則A =
12.若方程8x2+(k+1)x+k-7=0有兩個(gè)負(fù)根,則k的取值范圍是
13設(shè)集合A={ },B={x },且A B,則實(shí)數(shù)k的取值范圍是。
14.設(shè)全集U={x 為小于20的非負(fù)奇數(shù)},若A (CUB)={3,7,15},(CUA) B={13,17,19},又(CUA) (CUB)= ,則A B=
解答題
15(8分)已知集合A={a2,a+1,-3},B={a-3,2a-1,a2+1}, 若A B={-3},求實(shí)數(shù)a。
16(12分)設(shè)A= , B= ,
其中x R,如果A B=B,求實(shí)數(shù)a的取值范圍
四.習(xí)題答案
選擇題
1 2 3 4 5 6 7 8
C C B C B C D D
填空題
9.{(x,y) } 10.0, 11.{x ,或x 3} 12.{ } 13.{ } 14.{1,5,9,11}
解答題
15.a=-1
16.提示:A={0,-4},又A B=B,所以B A
(Ⅰ)B= 時(shí), 4(a+1)2-4(a2-1)<0,得a<-1
(Ⅱ)B={0}或B={-4}時(shí), 0 得a=-1
。á螅〣={0,-4}, 解得a=1
綜上所述實(shí)數(shù)a=1 或a -1
【高考數(shù)學(xué)練習(xí)題】相關(guān)文章:
高考數(shù)學(xué)復(fù)習(xí)函數(shù)與方程專項(xiàng)練習(xí)題05-08
山西省高考數(shù)學(xué)練習(xí)題及答案05-11
高考英語(yǔ)的練習(xí)題05-09
高考數(shù)學(xué)江蘇省強(qiáng)化訓(xùn)練習(xí)題05-11
高考化學(xué)強(qiáng)化練習(xí)題05-05
高考語(yǔ)文練習(xí)題及答案05-07
高考理綜的練習(xí)題05-09
高考語(yǔ)文閱讀練習(xí)題05-09