淺談數(shù)據(jù)挖掘在管理會計學的應用
一、數(shù)據(jù)挖掘
數(shù)據(jù)挖掘是從數(shù)據(jù)當中發(fā)現(xiàn)趨勢和模式的過程,它融合了現(xiàn)代統(tǒng)計學、知識信息系統(tǒng)、機器學習、決策理論和數(shù)據(jù)庫管理等多學科的知識。它能有效地從大量的、不完全的、模糊的實際應用數(shù)據(jù)中,提取隱含在其中的潛在有用的信息和知識,揭示出大量數(shù)據(jù)中復雜的和隱藏的關(guān)系,為決策提供有用的參考。數(shù)據(jù)挖掘是從數(shù)據(jù)當中發(fā)現(xiàn)趨勢和模式的過程,它融合了現(xiàn)代統(tǒng)計學、知識信息系統(tǒng)、機器學習、決策理論和數(shù)據(jù)庫管理等多學科的知識。它能有效地從大量的、不完全的、模糊的實際應用數(shù)據(jù)中,提取隱含在其中的潛存有用的信息和知識,揭示出大量數(shù)據(jù)中復雜的和隱藏的關(guān)系,為決策提供有用的參考。
二、數(shù)據(jù)挖掘的現(xiàn)代最新方法介紹
常用的數(shù)據(jù)挖掘方法主要有決策樹(Decision Tree)、遺傳算法(Genetic Algorithms)、關(guān)聯(lián)分析(Association Analysis).聚類分析(C~smr Analysis)、序列模式分析(Sequential Pattern)以及神經(jīng)網(wǎng)絡(Neural Networks)等。
三、數(shù)據(jù)挖掘的實際應用
由于數(shù)據(jù)挖掘市場還處于起步的階段,但是發(fā)展很快。在國外有一些著名的大公司對數(shù)據(jù)挖掘系統(tǒng)進行了開發(fā)。
1.Intelligent Miner這是IBM公司的數(shù)據(jù)挖掘產(chǎn)品,它提供了很多數(shù)據(jù)挖掘算法,包括關(guān)聯(lián)、分類、回歸、預測模型、偏離檢測、序列模式分析和聚類。有2個特點:一是它的數(shù)據(jù)挖掘算法的可伸縮性;二是它與IBM/DB/2關(guān)系數(shù)據(jù)庫系統(tǒng)緊密地結(jié)合在一起。
2.EineSet是由SGI公司開發(fā)的,它也提供了多種數(shù)據(jù)挖掘方法,包括關(guān)聯(lián)分析和分類以及高級統(tǒng)計和可視化工具。特色是它具有的強大的圖形工具,包括規(guī)則可視化工具、樹可視化工具、地圖可視化工具和多維數(shù)據(jù)分散可視化工具,它們用于實現(xiàn)數(shù)據(jù)和數(shù)據(jù)挖掘結(jié)果的可視化。
3.Clementine是由ISL公司開發(fā)的,它為終端用戶和開發(fā)者提供提供了一個集成的數(shù)據(jù)挖掘開發(fā)環(huán)境。
4.DBMiner是由DBMiner Technology公司開發(fā)的,它提供多種數(shù)據(jù)挖掘算法,包括發(fā)現(xiàn)驅(qū)動的OLAP分析、關(guān)聯(lián)、分類和聚類。特色是它的基于數(shù)據(jù)立方體的聯(lián)機分析挖掘,它包含多種有效的頻繁模式挖掘功能和集成的可視化分類方法
四、數(shù)據(jù)挖掘與管理會計
1.提供有力的決策支持
面對日益激烈的'競爭環(huán)境,企業(yè)管理者對決策信息的需求也越來越高。管理會計作為企業(yè)決策支持系統(tǒng)的重要組成部分,提供更多、更有效的有用信息責無旁貸。因此,從海量數(shù)據(jù)中挖掘和尋求知識和信息,為決策提供有力支持成為管理會計師使用數(shù)據(jù)挖掘的強大動力。例如,數(shù)據(jù)挖掘可以幫助企業(yè)加強成本管理,改進產(chǎn)品和服務質(zhì)量,提高貨品銷量比率,設計更好的貨品運輸與分銷策略,減少商業(yè)成本。
2.贏得戰(zhàn)略競爭優(yōu)勢的有力武器
實踐證明數(shù)據(jù)挖掘不僅能明顯改善企業(yè)內(nèi)部流程,而且能夠從戰(zhàn)略的高度對企業(yè)的競爭環(huán)境、市場、顧客和供應商進行分析,以獲得有價值的商業(yè)情報,保持和提高企業(yè)持續(xù)競爭優(yōu)勢。如,對顧客價值分析能夠?qū)槠髽I(yè)創(chuàng)造80%價值的20%的顧客區(qū)分出來,對其提供更優(yōu)質(zhì)的服務,以保持這部分顧客。
3.預防和控制財務風險
利用數(shù)據(jù)挖掘技術(shù)可以建立企業(yè)財務風險預警模型。企業(yè)財務風險的發(fā)生并非一蹴而就,而是一個積累的、漸進的過程,通過建立財務風險預警模型,可以隨時監(jiān)控企業(yè)財務狀況,防范財務危機的發(fā)生。另外,也可以利用數(shù)據(jù)挖掘技術(shù),對企業(yè)籌資和投資過程中的行為進行監(jiān)控,防止惡意的商業(yè)欺詐行為,維護企業(yè)利益。尤其是在金融企業(yè),通過數(shù)據(jù)挖掘,可以解決銀行業(yè)面臨的如信用卡的惡意透支及可疑的信用卡交易等欺詐行為。根據(jù)SEC的報告,美國銀行、美國第一銀行、聯(lián)邦住房貸款抵押公司等數(shù)家銀行已采用了數(shù)據(jù)挖掘技術(shù)。
五、數(shù)據(jù)挖掘在管理會計中的應用
1.作業(yè)成本和價值鏈分析
作業(yè)成本法以其對成本的精確計算和對資源的充分利用引起了人們的極大興趣,但其復雜的操作使得很多管理者望而卻步。利用數(shù)據(jù)挖掘中的回歸分析、分類分析等方法能幫助管理會計師確定成本動因,更加準確計算成本。同時,也可以通過分析作業(yè)與價值之間的關(guān)系,確定增值作業(yè)和非增值作業(yè),持續(xù)改進和優(yōu)化企業(yè)價值鏈。在Thomas G,John J和Il-woon Kim的調(diào)查中,數(shù)據(jù)挖掘被用在作業(yè)成本管理中僅占3%。
2.預測分析
管理會計師在很多情況下需要對未來進行預測,而預測是建立在大量的歷史數(shù)據(jù)和適當?shù)哪P突A上的。數(shù)據(jù)挖掘自動在大型數(shù)據(jù)庫中尋找預測性信息,利用趨勢分析、時間序列分析等方法,建立對如銷售、成本、資金等的預測模型,科學準確的預測企業(yè)各項指標,作為決策的依據(jù)。例如對市場調(diào)查數(shù)據(jù)的分析可以幫助預測銷售;根據(jù)歷史資料建立銷售預測模型等。
3.投資決策分析
投資決策分析本身就是一個非常復雜的過程,往往要借助一些工具和模型。數(shù)據(jù)挖掘技術(shù)提供了有效的工具。從公司的財務報告、宏觀的經(jīng)濟環(huán)境以及行業(yè)基本狀況等大量的數(shù)據(jù)資料中挖掘出與決策相關(guān)的實質(zhì)性的信息,保證投資決策的正確性和有效性。如利用時間序列分析模型預測股票價格進行投資;用聯(lián)機分析處理技術(shù)分析公司的信用等級,以預防投資風險等。
4.產(chǎn)品和市場預測與分析
品種優(yōu)化是選擇適當?shù)漠a(chǎn)品組合以實現(xiàn)最大的利益的過程,這些利益可以是短期利潤,也可以是長期市場占有率,還可以是構(gòu)建長期客戶群及其綜合體。為了達到這些目標,管理會計師不僅僅需要價格和成本數(shù)據(jù)有時還需要知道替代品的情況,以及在某一市場段位上它們與原產(chǎn)品競爭的狀況。另外企業(yè)也需要了解一個產(chǎn)品是如何刺激另一些產(chǎn)品的銷量的等等。例如,非盈利性產(chǎn)品本身是沒有利潤可言的,但是,如果它帶來了可觀的客戶流量,并刺激了高利潤產(chǎn)品的銷售,那么,這種產(chǎn)品就非常有利可圖,就應該包括在產(chǎn)品清單中。這些信息可根據(jù)實際數(shù)據(jù),通過關(guān)聯(lián)分析等技術(shù)來得到。
5.財務風險預測與評估
管理會計師可以利用數(shù)據(jù)挖掘工具來評價企業(yè)的財務風險,建立企業(yè)財務危機預警模型,進行破產(chǎn)預測。破產(chǎn)預測或稱財務危機預警模型能夠幫助管理者及時了解企業(yè)的財務風險,提前采取風險防范措施,避免破產(chǎn)。另外,破產(chǎn)預測模型還能幫助分析破產(chǎn)原因,對企業(yè)管理者意義重大。,數(shù)據(jù)挖掘技術(shù)包括多維判別式分析、邏輯回歸分析、遺傳算法、神經(jīng)網(wǎng)絡以及決策樹等方法在管理會計中得到了廣泛的應用。
六、結(jié)論
數(shù)據(jù)挖掘是個嶄新的領(lǐng)域,對于數(shù)字和信息的處理是非?茖W和方便的,也是非常高效率和合理分析的非常好的工具,對于會計管理領(lǐng)域的應用在國際上只是剛剛開始,相信隨著會計的國際化的接軌和計算機科學的進步,在我國的會計領(lǐng)域中的數(shù)據(jù)挖掘理論會得到不斷的提升,在管理會計實際應用中的數(shù)據(jù)挖掘也越來越多樣化和普及化。
【淺談數(shù)據(jù)挖掘在管理會計學的應用】相關(guān)文章: